First Name: \qquad Last Name: \qquad

Student-No: \qquad Section: \qquad

Short answer questions

1. 2 marks Each part is worth 1 mark.
(a) A company manufactures bicycles. The figure below shows Cost, Revenue and Profit as a function of number of bikes sold. Mark these functions appropriately (for example, What does graph A represent? Cost, Revenue or Profit? and so on for graph B and C).

Answer: $\mathrm{A}=$ Profit, $\mathrm{B}=$ Revenue and $\mathrm{C}=$ Cost

Solution: Cost and Revenue cannot be negative. Cost is the only function that can positive when $q=0$.
(b) Compute $\lim _{t \rightarrow 0} \frac{\sqrt[3]{-1-t^{2}}}{t^{3}-e^{t}}$. If limit does not exist, write DNE.

Answer: 1
Solution: $\lim _{t \rightarrow 0} \frac{\sqrt[3]{-1-t^{2}}}{t^{3}-e^{t}}=\frac{\sqrt[3]{-1}}{0-1}=\frac{-1}{-1}=1$

Long answer questions - you must show your work

2. 2 marks Amir has an offer from his bank to change his current investment plan with annual interest rate of 12% compounded continuously to a new plan with annual interest rate of r compounded semi-annually. What should the minimum r be so that he at least makes the same amount of money?

Answer: $i=2\left(e^{0.06}-1\right)$

Solution: We use $F V=P V e^{0.12 t}=P V(1+r / 2)^{2 t}$ to get

$$
\begin{aligned}
e^{0.12 t} & =\left(1+\frac{r}{2}\right)^{2 t} \Rightarrow 0.12 t=2 t \ln \left(1+\frac{r}{2}\right) \Rightarrow \\
0.06 & =\ln \left(1+\frac{r}{2}\right) \Rightarrow e^{0.06}=1+\frac{r}{2} \Rightarrow \\
r & =2\left(e^{0.06}-1\right)
\end{aligned}
$$

3. 2 marks Compute the limit $\lim _{x \rightarrow 1} \frac{x^{4}-1}{2 x^{2}+4 x-6}$

Answer: $\frac{1}{2}$

Solution: Direct substitution yields $0 / 0$, so we simplify first:

$$
\frac{x^{4}-1}{2 x^{2}+4 x-6}=\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{2(x+3)(x-1)}=\frac{(x-1)(x+1)\left(x^{2}+1\right)}{2(x+3)(x-1)}=\frac{(x+1)\left(x^{2}+1\right)}{2(x+3)}
$$

Hence the limit is $\lim _{x \rightarrow 1} \frac{(x+1)\left(x^{2}+1\right)}{2(x+3)}=1 / 2$.
4. EatPumpkin is a new chain restaurant with its famous pumpkin appetizer. It is found that if the price of pumpkin appetizer is $\$ 8$ each, an average of 60 people order the dish each day. When it drops the price of the appetizer to $\$ 5$, the number ordering it rises to 75 . Assume that the demand q is a linear function of the price p and each appetizer costs the restaurant $\$ 3$ (neglect constant cost).
(a) 2 marks Find the linear demand equation as a function of price (p)

$$
\begin{aligned}
& \text { Answer: } \\
& \qquad p=\frac{-1}{5} q+20
\end{aligned}
$$

Solution: A data point is $(q, p)=$ (quantity, price). So the demand curve will be given by $p=m q+b$ and will have slope $m=\frac{r i s e}{r u n}=\frac{\Delta p}{\Delta q}=\frac{-3}{15}=\frac{-1}{5}$. So the equation becomes

$$
p=\frac{-1}{5} q+b .
$$

Substituting in the point $q=60$ and $p=8$ yields:

$$
\begin{aligned}
p & =\frac{-1}{5} \cdot q+b \\
8 & =\frac{-1}{5} \cdot 60+b \\
8 & =-12+b \\
20 & =b
\end{aligned}
$$

Therefore,

$$
p=\frac{-1}{5} q+20
$$

(b) 2 marks Find the weekly profit function $P(q)$.

Answer: $P(q)=\frac{-7}{5} q^{2}+119 q$

Solution: We'll need Cost': $C(q)=3 q$ and Revenue: $R=p \cdot q=\left(\frac{-1}{5} q+20\right) q=\frac{-1}{5} q^{2}+20 q$
From which we see that:
$P(q)=R(q)-C(q)=\frac{-1}{5} q^{2}+20 q-3 q=\frac{-1}{5} q^{2}+17 q$ so weekly profit is $\frac{-7}{5} q^{2}+119 q$
(c) bonus 1 marks What is the optimized price for the pumpkin appetizer?

Answer: $p=\$ 11.5$

Solution: $P(q)=\frac{-1}{5} q^{2}+17 q=-\frac{1}{5} q(q-85)$
Because of symmetry of quadratic function, we know $P(q)$ is maximized in between the two roots. The two roots are at $q=0$ and $q=85 \Rightarrow q_{\max }=42.5$ which is equivalent to $p=\$ 11.5$.

