
Today, we will be discussing some more examples involving implicit differ-
entiation.

Problem 0.1. A cylinder is getting taller and thinner, but the surface area is

held constant at 50cm2. Find dr
dh

when the radius is equal to 2cm.

The surface area of a cylinder is 2πr2+2πrh. So we take the derivative with
respect to h to get

4πr
dr

dh
+ 2πh

dr

dh
+ 2πr = 0.

Therefore, we get
dr

dh
=

−r

2r + h
.

But when r = 2, we have
8π + 4πh = 50

so

h =
50− 8π

4π
.

We now plug in r and h to get

dr

dh
=

−2

4 + 50−8π
4π

.

Again, it’s important to take the derivative before trying to plug in any
numbers. Otherwise, you will get the wrong answer.

Problem 0.2. Suppose we are on the curve y2 = x3 + 5x− 6.

• Are there any places where the curve has a vertical tangent?

• Find the second derivative of y with respect to x at an arbitrary place on

the curve.

2y
dy

dx
= 3x2 + 5

dy

dx
=

3x2 + 5

2y

Vertical tangent lines can only occur if y = 0. Clearly (1, 0) is a point on the
curve for which y = 0. Let’s check if there are any others: factoring gives that
x3 + 6x − 6 = (x − 1)(x2 + x + 6), and x2 + x + 6 is irreducible because the
discriminant b2− 4ac is negative. Therefore, x = 1, y = 0 is the only possibility.

To verify that there is actually a vertical tangent line here, we need to
compute dx

dy
, which comes out to be 2y

3x2+5
, which is zero at (1, 0). So there is

indeed a vertical tangent line at (1, 0).
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Now, let’s work on finding the second derivative. We have

2y
dy

dx
= 3x2 + 5.

Let’s take another derivative:

2

[

dy

dx

]2

+ 2y
d2y

dx2
= 6x

So we solve for d2y

dx2 :

d2y

dx2
=

6x− 2
(

dy

dx

)2

2y

and plug in our expression for dy

dx
to get this whole thing in terms of just x and

y:

d2y

dx2
=

6x− 2
(

3x2
+5

2y

)2

2y
.

Problem 0.3. We will do another geometric example now: An ellipse can be

described as the set of points P in the plane such that, for two special points

called the foci, the sum of the distance from P to the foci is a constant. Consider

the ellipse with foci (−3, 0) and (3, 0) with distance-sum equal to 10. Find dy

dx

at the points where x = 3.

We have:
√

(x− 3)2 + y2 +
√

(x+ 3)2 + y2 = 10.

Upon differentiating, we get:

0 =
1

2
√

(x − 3)2 + y2

(

2(x− 3) + 2y
dy

dx

)

+
1

√

(x + 3)2 + y2

(

2(x+ 3) + 2y
dy

dx

)

.

At x = 3, we have ±y +
√

36 + y2 = 10. A little algebra gives that y = ±
64

20
.

We can plug this into the expression for dy

dx
.
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Let’s do a geometric example that works in 2 dimensions:

Example 0.1. You’re running at 5km/hr. You run on a road that is 1 meter

away from a tree. You run past the tree. How quickly is your distance from the

tree changing when you’re 50 meters away from the tree?

We have
D = x2 + y2

by Pythagoras. So by differentiating:

2D
dD

dt
= 2x

dx

dt

so
dD

dt
=

( x

D

) dx

dt

Now, use D = 50 and x =
√
2499 to get

√

2499

10
km/hr.

The point is that these kinds of distance problems really lend themselves to
related rates. Another classic example is one where both of the objects you’re
dealing with the distance of are moving.

Example 0.2. At noon, boat A is 100km north of boat B. Boat A is sailing

East at a constant speed of 30km

hr
and boat B is sailing West at a constant speed

of 35km

hr
. How quickly is the distance between the boats changing at 4:00 PM?

To do this, it really helps to draw a picture of what’s going on. Let’s draw
a picture illustrating the boats at both times.

Now, we know that boat A is sailing East and boat B is sailing west. Let’s
let a be the distance that boat A has travelled since noon and b be the distance
that boat B has travelled since noon. We know the speed of both boats:

da

dt
= 30

db

dt
= 35

We want to compute the rate at which the distance between the two boats
is changing. Looking at the picture and applying the Pythagorean theorem, we
conclude that the distance D between the two boats is related to the quantities
a and b by the equation:

D2 = (a+ b)2 + 1002.

We differentiate both sides to get:

2D
dD

dt
= 2(a+ b)

(

da

dt
+

db

dt

)
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We can find a and b at 4PM : a is equal to 30 ·4 = 120; b is equal to 35 ·4 = 140.
By Pythagoras, we get that D =

√

1202 + 1402 =
√
14400 + 19600 =

√
34000.

So we plug and chug to get:

dD

dt
=

(260)(65)
√
34000

.

The point of this problem is that the Pythagorean theorem is useful when
you are doing related rates problems involving distances.

Another important example involving similar triangles is the “shadow” prob-
lem:

A woman with height 2m is walking toward a lamppost at a rate of 2m

s
. The

lamppost is 3 meters tall. How quickly is the length of her shadow decreasing
when she is 1m away from the lamppost.

Here, we know both rates, but we’re interested in a different quantity.
Let s be the length of the woman’s shadow and x be the distance from the

woman to the lamppost. Drawing the picture, we can conclude using similar
triangles that

3

2
=

x+ s

s
.

Solving for s we get that s = 2x. Therefore, ds

dt
= 2 dx

dt
. We can plug in

dx

dt
= −2m

s
to get a rate of −4m

s
. (Note that the distance to the lamppost is

not relevant for computing this rate of change).
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