P1) The cost function is given by $C(q)=2^{\sqrt{q}+5}$. Find the average cost of producing 16 units.

P2) The demand equation is given by $p=\left(\frac{1}{2}-\frac{q}{200}\right)^{2}$ where $p$ is the unit price and $q$ is the demand quantity.
a) Estimate the revenue made by selling the 10th unit.
b) Find the demand quantity at which revenue is maximised.

P3) Below is a graph of $f^{\prime}(x)$, the derivative of $f(x)$. The domain of the function $f(x)$ is $(-10,10)$.
a) Determine if the function $f(x)$ has any critical points.
b) Determine if the function $f^{\prime}(x)$ has any critical points


P4) Function

$$
f(x)=\left\{\begin{array}{cc}
x^{3}-3 x^{\wedge} 2 & 1 \leq x \leq 3 \\
\cos (\pi x)-1 & 0 \leq x<1
\end{array}\right.
$$

is defined on the interval of $[0,3]$.
a) Determine if Extreme Value Theorem can be applied to this function.
b) Find the absolute minimum and absolute maximum.

