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pentamode materials
pentamode lattice: statics

pentamode lattice: dynamics
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Cijm = » KoP3PG — C=)Y K,P*®P°
a=1
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Kelvin (1856) Positive definite strain energy : K, >0
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Cijm = » KoP3PG — C=)Y K,P*®P°
a=1

a=1

Positive definite strain energy : K, >0

Necessary and sufficient conditions for truss to be rigid

Necessary and sufficient condition for rigidity of 2D and 3D

» frameworks is Z> 6 and Z > 12, respectively
Deshpande et al. JMPS (2001).

Maxwell (1864)



Bell (1907)

6 6
Cijm = » KoP3PG — C=)Y K,P*®P°
a=1

a=1

Positive definite strain energy : K, >0

Necessary and sufficient conditions for truss to be rigid

Necessary and sufficient condition for rigidity of 2D and 3D

» frameworks is Z>5 and Z > 11, respectively
Deshpande et al. JMPS (2001).
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6 6
Kelvin Cz'jkl = ZKQ PZ-?P]?E — C= ZKQ P @ P“
a=1 a=1

Ko>0, a=1,2,...6

Milton and Cherkaev (1995)

Ki=0, K,>0, a=2,...6 Unimode

Ky =Ky=0, Bimode

Ki=..=K;=0, Kg >0 Pentamode (PM)

PM: five of the eigen-stiffnesses are zero

proposed diamond structure five (penta) easy/soft modes



Warren & Kraynik (1988, ..) Ashby, Deshpande, Hutchinson & Fleck, Christensen (1995, 2000)

Stretch dominated, bending dominated, collapse mechanismes, ....
........... soft modes, easy modes, isostatic



Stretch dominated, bending dominated, collapse mechanismes, ....
veeenenn..SOft modes, easy modes, isostatic
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Gurtner & Durand, “Stiffest elastic networks”, PRSA 2014 doi: 10.1098/rspa.2013.0611
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Gurtner & Durand, “Stiffest elastic networks”, PRSA 2014 doi: 10.1098/rspa.2013.0611

soft modes are bending dominated

(b)

i.e. effective static moduli, are stretch dominated
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Pentamode lattice structures

Mejica and Lantada Smart Mat. Struct. 2013

Kadic et al.,
NJP 2013

Schnitty et al.

,APL 2013



water as an elastic “solid”
elastic equation of motion dive = pu

0ij = Cijkicrt — o = Ce
Acoustics Cijki = Kdi50,1 — C=KI®I

Water is a pentamodal elastic material

transformation acoustics: isotropic PM ====) anisotropic PM
Norris (2008, 2009)

pentamode form of stiffness: O — KS @ S



mechanical behavior of pentamode materials (PM) Cijkl = K Qiijl

a single type of stress (and strain)

- like hydrostatic stress and volumetric strain of a liquid

I
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T
static equilibrium ... under gravity

PM = limiting case of anisotropic solids with zero “shear” rigidity



Metal Water

iCs in water

ion acoust

tructure for transformat

generic s

Norris, Nagy (2011)
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struts

tial role mainly
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- for stiffness mainly
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shear modulus = 0.065 Gpa

bulk modulus
density




Pentamode material and transformation acoustics

same amount of total empty (cloaked) space ‘ heavy metal preferred

ST
"

_, i

i.

voids “invisible”

volume of empty space remains constant

conservation of empty/cloaked space = conservation of mass



pentamode materials
pentamode lattice: statics

pentamode lattice: dynamics



stretch dominated effective elastic moduli

, d=3

/=14

Fully stiff
Z>11, d

=3

d=2

’

Z>5

Pentamodal

Z=d+1




Ingredients:

JAVAVAVAN
\VAVAVAVA

Effective elastic moduli

Z
1
C = V Z RiRj\/MiMj Pij(Vz' & Vz‘) 0% (Vj &) Vj) where

,J=1

—1
Pij = (Sz'j —V; - (ka & Vk) Vi, V= Mi_l/zeq;



Effective elastic moduli of stretch dominated lattices
Ingredients:

\VAVAVAVA

VA
1
C = V Z RiRj\/MiMj P@'j(Vi &) V@') & (Vj & Vj) where

1,7=1

5 ZZ -1 o —1/2
P?;j = ij_Vz" Vi ®Vk °Vj, V; :Mz €;
k=1

Pisaprojector PESPITHP =7 "d|

‘ rankC < Z —d



Effective elastic moduli of stretch dominated lattices
Ingredients:

\VAVAVAVA

VA
1
C = V Z RiRj\/MiMj P@'j(Vi &) V@') & (Vj & Vj) where

1,7=1

5 ZZ -1 o —1/2
Pij = ij_Vz" Vk®Vk °Vj, V; :Mz €;
k=1

Pisaprojector PESPITHP =7 "d|

‘ rankC < Z —d




Explicit static PM moduli for lattices with Z=d+1
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Z=3, d=2 2D PM lattices (all isotropic)

Pentamode: C — KS @ S

d+1

C= (VZ’}%) (Z%‘ei ®ez’) ® (Z’Yj =) ®ej)
k=1 i=1 j=1

d+1

where 'Yizj\j__M.'(Z—ek@ek) Zﬁj
7 1 ; J

1 d+1 d+1

. . (R 4z
R;, e; length, direction, M; = |, B, A, axial compliance, V = cell volume



pentamode materials
pentamode lattice: statics

pentamode lattice: dynamics



Semi-analytical methods for lattice dynamics

————————————————————————————

Colquitt et al. Proc. R. Soc. A, 2011 and 2013.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

-2D
- Longitudinal and flexural waves
- Effective mass underestimated if flexural waves left out

Leamy, J. Sound. Vib., 2012

- Wave based approach, 2D, using reflection & transmission

Here — 2D and 3D, L and flex waves

- Consistent method 2D, 3D
- Low frequency asymptotics (2D)
- Correct effective mass
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Lattice dynamics: for each rod

1) Longitudinal wave equation

0? ;
pij 5ty = =@ dijitgg, wig(0) = e, (L) = er -
e W sin(siw(ls —x)) + eq - W, sin(swz
i (1) = 1w sin(sjw( i r))+ep-u,; 5111(‘)ijl)? -

sin(s;;wl;;)

2) Flexural wave equation 34-11_.'

Ors
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€3, €3 e, 63 w::
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29, E‘i’ El] E‘l

Bending in orthogonal directions



2) Flexural wave equation
O*w 4
Ny
— — v w = 0,
d?

w”(0) w(0)
—w”(0) | _ w'(0)
—w" (1) w(l)

w” (1) w' (1)

Plesntsen) s —Psts) oo
K (w) = 1 j‘;r"QSSh ‘}"(.?Ch — cSp) _";rz(c — cp) v(sp — s) K — Ky
1 — ccp —(s+sp)  Yle—cn)  lesp +scp) —*sSh, K?{
v (cp, — ¢) v(sp — s) —~3ssp, ~v(sch — csp)
c = cosvyl, s =sm~l, ¢y = cosh~l, s, = sinh~l
€3, E‘-ﬁ €3, EE ul,
ey, e Wy ez, e} | ;
a; . a; / El-;:p . &
ey, e} e, ef

Bending in orthogonal directions
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z ’
b
93., 93

node i l/z

e]_= E‘l

longitudinal bending

1 3
;= 1£,(0) + £5(0) + £ (0)

9 .
E f,; = —w"M;u;, M, =diag(m;.m;.m;. 1;. 1;.1;)

Z (P:{LJ} exp(ik - g;) ug — Plj ul)

j EJ'U']

Z (PQJ exp(ik - g;) uy

JEND

P(Q) = [1;S;j CSC eijele? — Ajj (eg; eg) K, (82; eg)T — Ajj (e3; —eg)Kg (83; —eg)T

ay M = set of nodes connected to node i 8j =
6 ® g =a;—as, jEeEN

P = sy ot Sueref + (e ) Ka(es. o)+ Ay (s, —e)Ki(es. —ef)" &
— T



equation/dispersion relation

el %

u . H1 H*}
= . M =diag(M;.M,). H=H(w.k) = -
a= (). M= dingMi M), H=Hel = (fE )

H, = Z Pg?, Hy = Z Pl; exp(ik-g;), Hs= Z P(l?

j EJ'\fl j EJ\G jl‘ EJ\G



equation/dispersion relation

Hu = w*Mu

el %

(U1 I CUR — W — Hl H2
u = (112) . M = diag(M;, M,), H=H(w. k) = (Hj H3)

Hliipgfg. H, — — P Y explik - g;), Ha -§_
CIEND



Honeycomb: 2D pentamode

1.4x10°

1.2x10°

1.0x10° 4

o (rad/sec)
h o c

Beam theory

Aluminum beams

K I M

o (rad/sec)

1.4x10° 1
1.2x106-7\ >
1.0x10° ‘*\/ \\
8.0x10° \\__/ \
6.0x10° —
4_0x105_§><\_ :/'\</\‘
Sl P
2.0x10 \/—'\ ."....:-':
0.0 B —
K r M

length : thickness = 12.5:1

COMSOL



Beam theory COMSOL

Aluminum beams length : thickness = 20:1



Diamond lattice : 3D pentamode

steel rods length : thickness = 20:1
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Low frequency asymptotics : 2D

Gives correct effective mass: 17, = 1M1 + 9 + E Pl_}ll_}
JEN,

—1

| . o _ 3l /1

Gives correct quasistatic wave Cp — —— (— + —) , C; =cp+
speeds



Challenges

dynamics:

Hu — DJBMU u= (El) , M = diag(M;,M,). H= H(w.k)

|
/"—'\
s
angan

low frequency asymptotics for 3D

use as semi-analytical tool, e.g. relate to “dynamics homogenization”, Willis equations
(Norris et al., PRSA 2012)

statics |z
C= V Z R@RJ \/MiMj P@j(vi & V@) & (Vj & Vj) where

i,j=1

1

Z
— _ —1/2
Pij:cﬁij—v,;-(g Vk@Vk) * Vi, Vz':M,i /ei
k=1

stretch + bending
relate to asymptotics of dynamic model
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