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• Nonlinear periodic structures exhibit additional unique wave properties     

- Existence of highly stable localized solutions1 even without defects 

 

- Solitary waves and solitons2,3 

 

- Variations in wave speeds and propagation direction related to  

   wave amplitude and nonlinearity 

• Our interest is in tunable phononic devices (frequency isolators,  

   filters, logic ports, resonators, etc…) 

• Most nonlinear analysis of discrete systems begins with a long  

   wavelength approximation and then posing of an equivalent  

   continuous system 

Nonlinear Periodic Structures 
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• Analytical treatment for weakly nonlinear media 

 

• Treats the infinite, discrete system without reverting to the long  

   wavelength limit 

 

• Amounts to a Lindstedt Poincare’ approach combined with Bloch  

   Analysis 

 

• A Multiple Scales perturbation approach is employed for wave- 

  wave interactions 

Perturbation Approach 
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where, 

General Approach 
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• Dynamic behavior is governed by, 

N – denotes number of 

degrees of freedom for a 

unit cell 

• For the 9 cell assembly,  

Unit Cell EOM 
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• Equations of motion for the unit cell are extracted from the previous  

   equation expressed for 9-cell assembly, 

• Weakly nonlinear model is governed by, small parameter 

Nonlinear force interactions 

• Free wave propagation is analyzed by setting the external forcing to zero 

=0 
Lumped 

mass  

Unit Cell EOM 
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• Asymptotic expansion of frequency and displacement, 

• Substituting the above expansions leads to ordered equations, 

• 0th order equation can be solved for Bloch waves 

0 

Asymptotic Expansions 
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• Zeroth order solution is obtained using Bloch wave assumption  

0 

• Bloch wave theorem is imposed by assuming the following 

   displacement expression,  

• Substituting above into the zeroth order equation,  

0 

(0) 
(0) 

0 

Eigenvalue 

problem leads to, 

Solution Approach 



Therefore, the RHS of       order equation with      dependence is 
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normalized wave mode 

Reference unit cell,  (n1, n2) = (0,0)  

Can be easily seen that nonlinear force is periodic in  

For jth mode, 

1st Order Correction 
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Solvability condition for the jth mode  

Finally, the first order correction to frequency for any jth mode :  

1st Order Correction 
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Nonlinear force interaction can be described by: 

Monatomic Chain 
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• Dispersion in one-dimensional nonlinear periodic chains 

Tunable

A Nonlinear Diatomic 

System

High Gain 

Low Gain 
Amplitude Dependent Frequency Isolator 

Input Output 

Increase Amplitude 

Nonlinear Device 
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• Each mass is connected to 4 

surrounding masses 

• Assumed force interaction, 

 

where ,  is relative displacement 

between two masses 

  Stiffness parameters k1 =1.0 N/m, k2 =1.5 N/m, A0 = 2.0. 

 - - - -  Γ1= Γ2 = +1.0, ─── Linear ( Γ1= Γ2= 0), ∙∙∙∙∙∙∙∙ Γ1= Γ2 = -1.0  

Square Monatomic Lattice 
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 β = m1 / m2 = 2, Stiffness parameters: k1 =1.0 Nm-1, k2 

=1.5 Nm-1, A0=2.0 

- - - -  Γ1= Γ2 = +1.0 (hard),  ─── Linear ( Γ1= Γ2 = 0),  

∙∙∙∙∙∙∙∙∙∙∙ Γ1= Γ2 = -1.0 (soft) 

Amplitude Dependent 

Band Gap 

ω 

Diatomic Lattice 
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• Group velocity defines energy flow as wave propagates 

From nonlinear dispersion, we know that  

Hence, 

• Group velocity contours are also amplitude dependent 

 

• Useful for predicting energy flow in nonlinear structures 

Gradient of dispersion 

relation 

Group Velocity Plots 
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ω = 1.75 rads-1 

A0 = 0.10 A0 = 0.50 A0 = 0.75 A0 = 1.00 A0 = 1.25 A0 = 1.50 A0 = 1.75 A0 = 1.90 A0 = 2.00 

μ1 

μ2 

cg1 

cg2 

Wave  is impeded along a1 axis 

Amplitude-Dependent cg 
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• Imposing the displacement on the left 

   boundary at frequency ω0 and phase  

   shift 

• The phase shift determines the angle at  

   which wave is injected θ and also the  

   wavenumber along a2 axis 

 

• Numerical integration of equations of  

   motion  

A plane wave is injected into a finite 

spring-mass lattice at incident angle 

θ 
• From the response, the propagation constants are computed using  

   FFTs in space  

 

• θ is varied from 0 to π/2 to determine iso-frequency contour in one  

   quadrant 
 

Single frequency denotes particular 

iso-frequency contour on dispersion 

surface 

Numerical Validation 
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k – Linear Stiffness 

Γ – Nonlinear Stiffness 

m = 1, k1 = 1.5 Nm-1, k2 = 1.0 

Nm-1, 

 Γ1 = +1.0 Nm-3, Γ2 = -1.0 Nm-3
,  

 ──── A0 = 0.1 (Perturbation Analysis), ● A0 = 0.1 (Numerical Estimation), 

 ∙∙∙∙∙∙∙∙∙∙∙∙ A0 = 2.0 (Perturbation Analysis), ■ A0 = 2.0 (Numerical Estimation) 

Linear 

Nonlinear 

ω=1.6 rads-1 

Monatomic Lattice Results 
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m = 1, k1 = 1.5 Nm-1, k2 = 1.0 Nm-1,  

Γ1 = +1.0 Nm-3, Γ2 = -1.0 Nm-3 

 ──── A0 = 0.1 (Perturbation Analysis),  

● A0 = 0.1 (Numerical Estimation), 

 

 ∙∙∙∙∙∙∙∙∙∙∙∙ A0 = 2.0 (Perturbation Analysis),  

■ A0 = 2.0 (Numerical Estimation) 

 

k – Linear Stiffness 

Γ – Nonlinear Stiffness 

Outliers indicate evanescent waves 

Linear 

Nonlinear 

ω=1.9 rads-1 

Monatomic Lattice Results 
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• Point harmonic forcing in mono-atomic lattice generates spherical wave front  

• Quasi-symmetric linear stiffness but asymmetric in nonlinear stiffness 

• Asymmetric nonlinear stiffness generates “dead zone” along a1 axis with amplitude  

   increase 

Low Amplitude High Amplitude 

Monatomic Lattice Results 



Low-Amplitude Excitation High-Amplitude Excitation 

• “Low” Amplitude vs. “High” Amplitude 

Nonlinearly Activated Waveguide 
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Wave-Wave Interactions 

 

■ Two waves (A and B) introduced 

■ Results in additional term due to wave-wave interaction (Method of Mult. Scales)   

□ Similar relation holds for ωB with indices A and B switched 
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Wave-interaction term 

 

 

 
Previous correction term 

■ Additional waves result in the same wave-wave interaction term (with 

appropriate indices) 

 

 

 
Multiple wave-interaction terms 
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a
j = 0 j = 1 j = -1 

Manktelow et. al., 2010, Nonlinear Dynamics 



■ Tunable dispersion relation by introducing a second wave 

■ Display both dispersion relations on the same plot: 
□ Let ωB > ωA and ωB=r*ωA 

■ Wave interactions provide additional latitude in device design 

Wave Interaction Significance 

Potentially 

significant shift in 

the band gap that 

could be utilized in 

metamaterial design 

(κA, ωA) with wave interactions 

(κ, ω) no wave interaction 

(κB, ωB) with wave interactions 

Parameters: 2

2

2

r

A

B







Maximum frequency 

limited by r and 

cutoff location 

24 



Numerical Simulation 

■ Example: B wave 2*cos(κB aj – ωBt) may be shifted by 10% using nonlinear 

wave interactions: 

□ Simulation 1: r=3, A=4.36 

□ Simulation 2: r=5, A=8.00 

 

10% 
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Region I: Negative group velocity 

corrections 

Region II: Positive group velocity 

corrections 

Application: Beaming 

Control 

• Numerical simulations validate the expected direction shift 

– Control wave field in horizontal direction 

– (Image filtering to remove control wave from view) 



Application: Tunable Focusing 

■ Device schematic: two sources at a wave-beaming frequency 

produces a high-intensity region 

• Numerical simulation of monoatomic lattice 

– Control wave field introduces dynamic anisotropy 

– Increased stiffness  

from control wave alters 

the beam direction 



■ The classical Duffing oscillator exhibits a well-known frequency shift and models 

many physical resonators 

• What about a chain of oscillators? 

Backbone curve looks 

remarkably like the 

dispersion frequency shift 

in the monoatomic chain 

Ref [9] 

Experimental Verification 



■ Observe that for 𝜇 = 𝜋/3 the dispersion shift is identical to the Duffing backbone 

curve 

□ Dispersion shifts associated with free-wave propagation are analogous to backbone 

curves in finite systems. 

□ Provides a means for experimentally measuring dispersion shifts 

Experimental Verification 



■ Wire/mass system approximates a 

monoatomic chain 

■ Measure resonances at large amplitudes to 

determine dispersion shifts 

Experimental Verification 



Propagating wave (240 Hz, pass 

band) 

Evanescent wave (300 Hz, stop band) 

Resonant peaks in a finite periodic 

system fall on dispersion branches [10] 

Experimental Verification 

Evanescent wave (300 Hz, stop band) 



■ Slow time-domain frequency sweeps over natural frequencies illustrates Duffing 

nonlinearity 

□ Despite large amplitudes near resonance, signal is essentially monochromatic 

□ Hilbert transform converts time-domain signal into an analytic signal 

Experimental Verification 



• Slow up/down frequency sweeps (~0.2 Hz/s) yield backbone curve, which relates to 

nonlinear dispersion shifts 

Conclusions 

• Resonance backbone curves are related to free-wave propagation 

• Resonances in finite periodic systems can be analyzed via the dispersion relation of a 

unit cell 

 

Experimental Verification 
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 Experimental verification 

1D string is very limited 

2D offers opportunity to study wave-wave interactions (shifting 

focus, etc.) and amplitude-dependent group velocity  

 

 

 

Follow-On Research 
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 Device construction 

Perhaps RF devices? 

 

Strongly nonlinear periodic materials/structures 

Stability of plane waves 

Reconfigurability 

Solitons 

 

Follow-On Research 
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