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Why Study Bandgaps?
MEMS Phononic Crystals Si-Nanomesh Structure

382 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 21, NO. 2, APRIL 2012

Fig. 5. Fabrication steps for the PnC waveguide-based resonator. The fabrica-
tion process starts with (a) an SOI wafer. (b) A stack of Mo/AlN/Mo is sputtered
on top of the wafer. (c) The top Mo electrode is patterned. (d) PnC holes are
then etched using dry etching. (e) AlN layer is removed from selected locations
to provide contact port to the PnC structure. (f) The structure is etched from
the backside using deep plasma etching to remove the handle Si and the BOX
layers to release the PnC slab structure at the desired locations.

Fig. 6. SEM image of the fabricated PnC resonator and a magnified version
of a subset of this image (inset). a is 15 µm, the diameter of the smaller holes
in the waveguide (2r′) is 4.9 µm, and the diameter of the rest of the PnC holes
(2r) is approximately 12.5 µm.

lithography and plasma etching to form the top electrode and
contact pads [Fig. 5(c)]. PnC holes are etched using a two-step
plasma etching recipe to etch the transducer stack and the Si
device layer [Fig. 5(d)]. The access to the lower Mo electrode is
obtained by selective wet etching of the AlN layer over the Mo
layer [Fig. 5(e)]. Finally, the structure is etched from the back
using backside-alignment lithography and deep plasma etching
of the handle and the BOX layers to release the structure and
form the PnC slab resonator [Fig. 5(f)].

A top-view scanning electron microscope (SEM) image of
the fabricated structure is shown in Fig. 6. The approximate
geometrical parameters of the fabricated PnC resonator are
measured to be a = d = 15 µm, 2r = 12.5 µm(r ∼ 0.42a),
and 2r′ = 4.9 µm(r′ ∼ 0.16a) using the SEM data. As noticed,
the values for the fabricated structure are slightly smaller than
the designed values due to fabrication imperfections. This can
be fixed by compensating the designated sizes in the mask
layers to correct for such fabrication imperfections.

The structure is characterized using a two-port vector
network analyzer with a 50 Ω reference impedance and

−10 dBm of input power to obtain the scattering parameters
of the device in the CPnBG frequency range. The two-port
scattering parameters of the resonator are plotted in Fig. 7.
As can be seen from Fig. 7, the main excited mode of the
structure is located at f = 134.14 MHz, and its transmission
and reflection parameters are considerably dominant over other
modes of the resonator.

In order to accurately evaluate the resonance properties of the
main excited mode, we fitted a modified Butterworth Van Dyke
(BVD) model [21] to the admittance profile of the selected
mode. The fitted BVD model as well as the measured and
fitted admittance and susceptance curves are shown in Fig. 8,
where Cp and Rp are the parallel capacitance and resistance
between the upper and lower electrodes of the port, and Cr1,
Lr1, and Rr1 are associated with the electrical equivalent circuit
of the resonator at its resonance frequency. The value of the
Q of resonance and the effective electromechanical coupling
coefficient can be accurately extracted from the BVD model
[22]. The extracted values are also shown in Fig. 8.

The Q of the resonance (i.e., 13 500) is by far the highest Q
reported for PnC resonators [10], [23] and significantly higher
(> 30%) than the results reported using the most advanced
techniques for MM resonators with a similar structure (AlN
stack on 15 µm Si) measured in air [24], confirming the
suppression of the support loss. The frequency of resonance
of the MM resonator is 134.1418 MHz, which translates to the
normalized frequency of f × a = 2012. This value is very close
to the standing extensional wave (lower branch) at K point in
Fig. 3, showing a good match with the theory.

In addition to the high Q of the resonance, the spurious-free
range of the resonance is also worth noting. The resonance is
more than 10 MHz apart from any resonance within 35 dB of
its power, which gives a large spurious-free frequency range
of operation. This result confirms that obtaining high quality
support-loss free MM resonators is possible through the use of
the PnC slab structures. Although the mechanism of excitation
is based on piezoelectric transducers in this paper (which limits
the maximum achievable Q due to the transducer stack loss),
this method of obtaining support loss-free resonators can be
extended to MM resonators with other means of excitation (e.g.,
electrostatic excitation).

V. CONCLUSION

Here, we showed that by using PnC waveguides, support
loss-free micro/nanomechanical (MM) resonators with large
spurious free spectral ranges can be obtained. This solves the
problem of the presence of spurious modes in the previously
reported MM resonators with PnC slab support-loss suppres-
sion. The measured value of Q = 13, 500 at frequency of f =
134.14 MHz in air is the highest value obtained to date for
Si-based resonators with similar stack of materials and fre-
quency range of operation. Although the reported waveguide-
based PnC slab resonator is applied to piezoelectrically excited
resonators, the use of PnC structures to obtain support loss-
free resonators can be utilized in other resonators with different
mechanisms of interrogation.

VHF (140 MHz) Bandpass MEMS filter

based on Phononic Crystal (Mohammadi et al.,

JMEMS, 2012)

Si Nanomesh to reduce thermal conductivity (Nature

Nanotech, Vol.5, 2010)

Bandgaps can be used for signal filtering in MEMS/NEMS and
tailor thermoelectric properties of nano materials
(Hopkins et al., ACS, Nano Letters, 11, 2011).

Passive vibroacoustic isolation.
6/32



INTRODUCTION Bandgaps Acoustic Response Prospects

Bandgaps
Frequency intervals over which wave propagation is forbidden.

Band structure Cell deformation
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Finite element +Bloch theory⇒ Solve K(k)q = ω2M(k)q
⇒ Band structure
Phani, A.S., Woodhouse, J., Fleck, N.A., 2006, “Wave Propagation in Two-dimensional Periodic Lattices,” Journal of
the Acoustical Society of America, 119(4), pp. 1995-2005.
Phani, A.S., and Fleck, N.A., 2008, “Elastic Boundary Layers in Isotropic Periodic Lattices,” ASME: Journal of
Applied Mechanics, 75 (2), pp. 021020-021027
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Bragg and sub-Bragg bandgaps

1. Bandgaps arise from
Bragg scattering mech-
anism. Limitation:
wavelengths ≈ cell
size(lattice constant)

2. Internal resonance
mechanism allows for
sub-Bragg bandgaps.
Sonic crystals, metama-
terials exploit this.

Locally Resonant Sonic
Materials

Zhengyou Liu, Xixiang Zhang, Yiwei Mao, Y. Y. Zhu,
Zhiyu Yang, C. T. Chan, Ping Sheng*

We have fabricated sonic crystals, based on the idea of localized resonant
structures, that exhibit spectral gaps with a lattice constant two orders of
magnitude smaller than the relevant wavelength. Disordered composites made
from such localized resonant structures behave as a material with effective
negative elastic constants and a total wave reflector within certain tunable
sonic frequency ranges. A 2-centimeter slab of this compositematerial is shown
to break the conventional mass-density law of sound transmission by one or
more orders of magnitude at 400 hertz.

Complete sound attenuation for a certain
frequency range can be achieved through
the concept of a “classical wave spectral
gap,” originally introduced in relation to
the electromagnetic wave, denoted the
“photonic band gap” (1). Subsequently ex-
tended to elastic waves (2–5), the idea
states that a strong periodic modulation in
density and/or sound velocity can create
spectral gaps that forbid wave propaga-
tion. However, the spatial modulation must
be of the same order as the wavelength
in the gap. It is thus not practical for shield-
ing acoustic sound, because the structure
would have to be the size of outdoor sculp-
tures in order to shield environmental nois-
es (5).

We present a class of sonic crystals that
exhibit spectral gaps with lattice constants
two orders of magnitude smaller than the
relevant sonic wavelength. Our materials
are based on the simple realization that
composites with locally resonant structural
units can exhibit effective negative elastic
constants at certain frequency ranges. If a
wave with angular frequency ! interacts
with a medium carrying a localized excita-
tion with frequency !o, the linear response
functions will be proportional to 1/(!o

2 –
!2). Such an effect is manifest in the elec-
tromagnetic frequency response of materi-
als with optical resonances, where a nega-
tive dielectric constant ε (generally on the
higher frequency side of the resonance)
implies a purely imaginary wave vector k "
n!/c (where n is the index of refraction and
c is the speed of light) and hence exponen-
tial attenuation of the electromagnetic wave
(6). Here, we implement this idea in the
context of elastic composites at sonic fre-
quencies. By varying the size and geometry
of the structural unit, we can tune the fre-

quency ranges over which the effective
elastic constants are negative.

Our composites have a simple micro-
structure unit consisting of a solid core
material with relatively high density and a
coating of elastically soft material. In the
experiments described below, we used cen-
timeter-sized lead balls as the core materi-
al, coated with a 2.5-mm layer of silicone
rubber (Fig. 1A). The coated spheres are
arranged in an 8 # 8 # 8 simple cubic

crystal with a lattice constant of 1.55 cm
(Fig. 1B), with epoxy as the hard matrix
material. Sonic transmission was measured
using a modified Bruel & Kjaer (B&K)
two-microphone impedance measurement
tube, type 4206. The sound source was
mounted at one end of the tube. The sample
was placed at the other end of the tube, with
one microphone detector mounted on the
surface of the sonic crystal facing the sound
source and another a few centimeters to-
ward the sound source. A small hole was
drilled from the rear of the sample, along
the centerline of the sonic crystal to its
center. A detector was placed inside the
hole, with the sensitive part approximate-
ly located at the center of the sonic crystal.
Transmission was measured as a func-
tion of frequency from 250 Hz to $1600
Hz for effectively a four-layer sonic crys-
tal. The sound source intensity was adjust-
ed so as to maintain a nearly frequency-
independent measured amplitude at the
front of the crystal. The ratio of the ampli-
tude measured at the center to the incident
wave shows two dips, with a peak after
each dip (Fig. 1C).

To understand the experimental results,

Department of Physics, Hong Kong University of Sci-
ence and Technology, Clear Water Bay, Kowloon,
Hong Kong, China.

*To whom correspondence should be addressed. E-
mail: phsheng@ust.hk

Fig. 1. (A) Cross section of a coated lead sphere that forms the basic structure unit (B) for an 8 #
8 # 8 sonic crystal. (C) Calculated (solid line) and measured (circles) amplitude transmission
coefficient along the [100] direction are plotted as a function of frequency. The calculation is for
a four-layer slab of simple cubic arrangement of coated spheres, periodic parallel to the slab. The
observed transmission characteristics correspond well with the calculated band structure (D), from
200 to 2000 Hz, of a simple cubic structure of coated spheres. Three modes (two transverse and
one longitudinal) are distinguishable in the [110] direction, to the left of the % point. The two
transverse modes are degenerate along the [100] direction, to the right of the % point. Note the
expanded scale near the % point.

R E P O R T S
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Liu et al., Science, 2000
L. Liu and M. I. Hussein, 2012, “Wave motion in periodic flexural beams and characterization of the transition
between Bragg scattering and local resonance,” J. Appl. Mech. 79, 011003.

8/32



INTRODUCTION Bandgaps Acoustic Response Prospects

Bandgap Analysis

For periodic materials and structures with symmetric unitcell
band gaps can be inferred WITHOUT Finite element +Bloch
theory⇒ Solve K(k)q = ω2M(k)q.

Locked and free unitcell resonances are band edges of symmetric systems.

Lord Rayleigh, 1887, “On the maintenance of vibrations by forces of double frequency, and on the propagation of
waves through a medium endowed with a periodic structure,” Philos. Mag. 24, 145–159 .

L. Brillouin, Wave Propagation in Periodic Structures, 2nd ed. (Dover Publications, New York, 2003), pp. 1–68.

Mead, D.J.,1996,“Wave propagation in continuous periodic structures: Research contributions from Southampton,
1964–1995,” Journal of Sound and Vibration, 190, pp. 495-524.

Raghavan, L., and Phani, A.S., 2013, ”Local resonance bandgaps in periodic media: theory and experiment,” Journal
of the Acoustical Society of America, Vol.134, Issue.3, pp. 1950-9159
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Unitcell resonances vs. Bandstructure

1. Unitcell resonance analysis will only reveal the edges but
not the dispersion structure.

2. Then why unitcell resonance analysis?

3. Relatively mature field of inverse structural dynamics

4. Given the resonances of a finite unit cell what is the corre-
sponding configuration/design of the structure(s)?

5. Band gap tailoring = inverse structural dynamics problem

10/32
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Illustrative Periodic Structures

Beam with periodic masses

Beam with periodic resonators

Beam with periodic masses and resonators

Beam with heavy periodic masses and resonators
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How do bandgaps emerge for flexural wave transmission in
the above systems?

Raghavan, L., and Phani, A.S., 2013, ”Local resonance bandgaps in periodic media: theory and experiment,” Journal
of the Acoustical Society of America, Vol.134, Issue.3, pp. 1950-9159.
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Unitcell Resonances Are Important
Unitcell BCs for band edges

1. Band edges are de-
cided by the resonant
frequencies of a sym-
metric unit cell under
locked and free boundary
conditions (Mead, JSV,
Vol.40 1975)
(Xiao et al. Phys.Lett.-A, 2011)

2. Determining the natural
frequencies of the unit
cell is sufficient!

(a) locked and (b) free
boundary conditions.

How can we find the natural frequencies of the unitcell? FE,
PDEs ....?

Receptance coupling from Structural Dynamics.
12/32
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Dynamic Receptance Analysis

Beam (modal form) Hb ≈
n∑

r=1

Φ2
r (x)

ar(ω2
r − ω2 + i2ζrωωr)

Resonator Ha = − ka−maω2+icaω
(ka+icaω)maω2

Mass Hm = − 1
Mω2

Parallel coupling
1
H

=
1

Hb
+

1
Ha

+
1

Hm

Unitcell resonances are the poles of H. Hb depends on the normal
modes (ωr, φr(x)) of the beam unit cell (background medium).
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Beam Without Periodicity
M = 0, ma = 0, ka = 0, ca = 0

Unitcell resonances are identical for both pinned and guided
unit cells⇒ Zero bandgap width. Guided beam has a zero
frequency (rigid body) mode.
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Solid lines—locked unit cell resonances; Dashed lines— free unit cell resonances
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Beam With Periodic Masses
M 6= 0, ma = 0, ka = 0, ca = 0
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Figure 2.3: Schematic of bandgap formation. The mode shapes for the two
types of end condition are shown. When a periodic inclusion is intro-
duced, the position of the natural frequencies are not influenced if they
coincide with the node position as indicated by the marker. The dot-
ted lines correspond to the guided end natural frequencies and the solid
lines correspond to the simply supported end natural frequencies.

ones we study in this work. Consider Fig 2.5(a). It depicts a unitcell of an infinite

lattice. Tessellating this unitcell along the basis vectors ei, translates to a periodic

structure with the unitcell as the repeating periodic unit. Let A be a point in the

unitcell (see Fig 2.5(b)). Admitting a harmonic plane wave into the infinite system

yields,

q(r) = qAei(wt�k.r). (2.1)

where q is the displacement of the harmonic wave at a reference unitcell, qA is the

wave amplitude of the point A; w is the frequency (rad/sec). This means that in

order to determine the response at every unitcell, the problem size scales with the

degree of freedom of the system. Bloch’s theorem states that the displacement at

any arbitrary point (say, B) in the unitcell with a position vector r = p+nei where, n

represents the number of unitcell translations along vector direction textb f ei from

A to a corresponding point B in a distant unitcell is given by,

21

Solid lines—locked unit cell resonances; Dashed lines— free unit cell resonances

Separation of symmetric and antisymmetric modes gives band gap.
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Beam With Periodic Resonators
M = 0, ma 6= 0, ka 6= 0, ca 6= 0
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Sub-Bragg bandgap mechanism: rigid mode of guided unit cell
is the lowest band edge. Bragg band gap widths decrease!
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Full Picture

Two-fold periodicity is bet-
ter.
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Design Chart for Sub-Bragg Bandgap Width
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δω = Bandgapwidth, ωa =
√
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ma

, kr = stiffness ratio,
mr = mass ratio.
Stronger coupling and heavier resonators enhance sub-Bragg
bandgap width.
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Bandgaps in Frequency Response
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Material vs. Structure
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Multifunctional Applications–Acoustics — # 1

Do lighter, stronger and stiffer
materials sound better?
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Multifunctional Applications–Acoustics — # 2

H. Introduction
The application of composite materials to aircraft structures will decrease aircraft mass and change how aircraft are designed and

constructed. The expectation is that the new materials will reduce the life cycle cost of the aircraft through lower manufacturing and
operational costs. A representative model of current aircraft sidewall construction is shown on the left in Fig. 1. The sidewall is
composed of 3 major components; the aircraft skin, longitudinal stringers and circumferential ring frames. All the components are
aluminum and are riveted to gether. The mass per Lunt area of the stiffened aluminum panel is 1.2 lb/ft2 (5.9 kg/m2).

Fig. 1 Stiffened aluminum sidewall construction (left) is typical of most aircraft today. On the right is a
composite honeycomb sandwich panel similar in construction to Hawker Premier fuselage.

Contrast the aluminum sidewall to the honeycomb sandwich composite panel shown on the right in Fig. 1. Visually the differences
are striking. The interior is smooth and the panel is much thinner than its aluminum counterpart, <1" (2.54cm) for the composite panel
vs. ?25' (6.35cm) for aluminum panel. This gives the designers the freedom to set a smaller diameter fuselage for a comparable
interior space, saving even more weight beyond the 35% reduction the materials already provide, (the mass per unit area of the
honeycomb panel is 0.79 lb/ft 2 (3.9 kg/m2)).

However, this weight savings comes at a cost in increased levels of interior noise. This trend is observed in transmission loss
measurements where the acoustic power incident on the `source' side of a panel is compared to the power on the `receiving' side. A
high transmission loss implies reduced interior noise. Fig. 2(a) shows the transmission loss of the stiffened aluminum panel compared
to a flat honeycomb composite panel of construction similar to the curved panel in Fig. 2. As can be seen, the honeycomb panel loses
as much as 10 dB in transmission loss to the aluminum panel. This deficiency will have to be compensated by added acoustic
treatment, reducing the weight benefit the manufacturer and it's customers expected to achieve. Note that the acoustic treatment weight
penalty is particularly onerous in this case because the honeycomb sidewall already provides sufficient thermal insulation. The
insulation blankets in an aluminum aircraft are needed to provide thermal isolation from the -50° C external temperatures. The
acoustic damping provided by the blankets is an added benefit with little added cost in either dollars or weight. The cost penalty for
acoustic damping in a honeycomb composite aircraft is now solely born by the noise requirement.

For these reasons, it is important to understand why the honeycomb panel has such poor noise performance and to investigate ways
in which the noise penalty can be reduced while maintaining the weight advantage these new materials bring to aerospace vehicle
design. The following section will discuss some of the theory behind the honeycomb composite panel's behavior. Subsequent sections
will present the results of testing various instances of honeycomb panels that were built to understand how the goal of increased
transmission loss without appreciable weight gain might be achieved.
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Fig. 2 Transmission loss of stiffened aluminum panel and solid core honeycomb panel (a), band average difference in
TL (b), and components of honeycomb sandwich panel (c).

A. Structural Acoustics Background
A sandwich core composite panel is composed of three components, the core and the inner and outer face sheets, Fig. 2(c). The

components can be made of many different kinds of materials depending on the application. For example, the core is often foam in
lightweight partitions, but is stiffer honeycomb in load bearing panels. Likewise, the face sheets can be sheet metal, fiberglass or
carbon fiber. The benefit of the sandwich core design is that a lightweight and semi-rigid core material acts to increase the stiffness of
the face sheets by virtue of their constrained displacement away from the composite panel's neutral axis. In this way the strength of the
composite panel is greater than the sum of its parts.

The light weight and increased stiffness results in higher wave
kl = Flexural wavenumber in sandwich plate speeds, and thus lower wavenumbers, in the material. This is
ks = Wavenumber in absence of bendingk b = Wavenumber in absence of shear significant because once the wavenumber in the panel falls below the
k - Acousticwavenumber ks wavenumber in air, the panel radiates sound more efficiently. The

wavenumber,,'frequency spectrum can be divided into 3 domains
k, depending on the type of wave propagating', Fig. 3. The lower

 

Face plate bending frequencies are dominated by bending waves whose nature is
determined by the composite panel properties. The mid-frequencies

Core shear  kb contain shear waves that are governed mostly by core properties.
The higher frequencies are dominated by flexural waves in the face

Section bending  
face plates y pyre 

sheets. For the honeycomb panels tested here, the shear wave is
considered to be the major source of the panel's increased radiation
efficiency.
The effect of the decreased mass and increased stiffness of the
honeycomb panel can be seen in the respective panels' wavenumber

Frequency w spectra; Fig. 4. In the wavenumber spectrum plots displayed here
Fig. 3 Dispersion curves for sandwich panels from Fahy'. and elsewhere, the total power in the panels is calculated as the sum

of the squared velocity over the surface of the panel. The velocity
was normalized by the input force during acquisition. The color axis

is in dB taking the total power in the solid core honeycomb panel as reference. The majority of the vibration energy in the stiffened

Source: NASA/TM-2009-215954
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Multifunctional Applications–Acoustics — # 3

6. Radiation from Bending Waves 525 

One may calculate the critical frequencies of plates with slots or 
stiffeners running in two directions from Eqs. (56) or (56b) (but not 
from Eq. (56a)), provided that the distance between adjacent ribs or 
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Fig. Vl/16. Critical frequencies for radiation into air from plates of various materials. 

slots is less that one-half the flexural wavelength at the critical fre-
quency and that the bending stiffness is approximately the same in all 
directions. Since the cutting of slots or the addition of small masses 
increases the ratio of the plate mass to the bending stiffness, and thus 
increases the plate's critical frequency, these approacpes may often be 
useful for reducing the sound radiation 1, and thus increasing the 
attenuation provided by paneling and the like. 

The critical-frequency-behavior of corrugated plates, or of plates 
with ribs or slots that run in only one direction, is somewhat more 
complicated. The bending wavenumber, and thus also the bending 
wavelength of such plates, depends on the direction of propagation 
along the plate. In the direction of the greatest stiffness, for example 
in the direction parallel to ribs, the wavelength is given by ABz = 
2/n V B;jm"w2, where B; denotes the maximum bending stiffness. The 

1 Cremer, L., Eisenberg, A.: Bauplan u. Bautechnik 2 (1948) 235. 

1. Structural requirements are in con-
flict with acoustic demands.

2. Light and stiff structures are acousti-
cally poor.

3. Sound Radiation

σ ≈ Pλc

π2S

√
f
fc
, f << fc

≈ 0.45
P
λc
, f = fc

≈ 1, f >> fc

(1)

(2)

(3)
(4)
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Outline

I Periodic materials and structures

I Bandgap analysis and tailoring

I Experiments

I Acoustic response tailoring

I Prospects
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Wave Response of Symmetric Sandwich Panels
An ideal core should maintain constant distance between face
sheets without allowing any relative sliding.

Core%compressibility% Core%shear%

Double3Wall3Resonance%
%(High%transmission)%

Coincidence%(Wavenumber%resonance):%Wave%
speeds%in%the%panel%match%sound%wave%speed%
in%the%fluid%(High%transmission)%

Adapted%from%Moore%&%Lyon,%JASA%1991%
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Periodic Materials Can Help?

Can truss lattice materials can
offer a potential solution?

Provided core material properties
are tailored in a sandwich design.
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Shear Panel (Kurtze & Watters, 1956)

Symmetric)mode)
(bulk)modulus))

An56symmetric)mode)
(shear)modulus))

Frequency)

Δω#

ωd#ωc#

Coincidence)

Cfluid#

High bulk modulus and low shear modulus (Metal Rubber?).
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Coincidence Panel (Warnaka, Holmers, 1969)
Symmetric)mode)
(bulk)modulus))

An56symmetric)mode)
(shear)modulus))

Frequency)

Δω#

ωd#ωc#

Coincidence)

Cfluid#

High damping, high bulk and low shear modulus are required,
weight penalty? 28/32
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Mode Cancelling Panel (Moore & Lyon, 1990)

Symmetric)mode)
(bulk)modulus))

An56symmetric)mode)
(shear)modulus))

Frequency)

Δω#

ωd# ωc#

Coincidence)

Cfluid#

Low bulk and low shear modulus are required, stiffness
penalty? 29/32
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Outline

I Periodic materials and structures

I Bandgap analysis and tailoring (Part 1)

I Acoustic response tailoring (Part 2)

I Prospects
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Concluding Remarks
1. Structural approaches provide powerful tools to calculate

the width and location of Bragg and sub-Bragg bandgaps
induced by a local resonator.

2. Bandgap tailoring can be posed as an inverse structural dy-
namics problems.

3. Fundamental conflict between structural (light and stiff) and
acoustic requirement.

4. Truss core materials are promising provided their dynamic
effective properties (shear and bulk modulus) are tailored.

5. ∗Transformational acoustics ideas (Metal water from A.N.
Norris) may be applied in the core material designs?
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Thank You!

Graduate Students: P.Chopra, L. Raghavan, & E.Mehr

Thank YOU for attending and
attention!
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