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INTRODUCTION
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Shape+Size+Scale = Material Property

Structures made of materials vs. materials with structure.
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Bandgaps

Why Study Bandgaps?
MEMS Phononic Crystals Si-Nanomesh Structure

VHF (140 MHz) Bandpass MEMS filter Si Nanomesh to reduce thermal conductivity (Nature
based on Phononic Crystal (Mohammadi et al., Nanotech, Vol.5, 2010)

JMEMS, 2012)

Bandgaps can be used for signal filtering in MEMS/NEMS and
tailor thermoelectric properties of nano materials
(Hopkins et al., ACS, Nano Letters, 11, 2011).

Passive vibroacoustic isolation.
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Bandgaps

Bandgaps

Frequency intervals over which wave propagation is forbidden.

Band structure Cell deformation
: . k-space position Branch 1 Branch 2 Branch 3 Branch 4
o
4
a
k-space locus
2 . A
. A== 1 G
=
P24 o
O 0
b 0 k'é})acc%ositinn 0 B

Finite element +Bloch theory = Solve K(k)q = w?M(k)q

= Band structure

Phani, A.S., Woodhouse, J., Fleck, N.A., 2006, “Wave Propagation in Two-dimensional Periodic Lattices,” Journal of
the Acoustical Society of America, 119(4), pp. 1995-2005.

Phani, A.S., and Fleck, N.A., 2008, “Elastic Boundary Layers in Isotropic Periodic Lattices,” ASME: Journal of
Applied Mechanics, 75 (2), pp. 021020-021027
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Bandgaps

Bragg and sub-Bragg bandgaps

1. Bandgaps arise from
Bragg scattering mech-

anism. Limitation:
wavelengths =~  cell

size(lattice constant)

2. Internal resonance
mechanism allows for
sub-Bragg  bandgaps.
Sonic Crystals, metama-
terials exploit this.
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Liu et al., Science, 2000

L. Liu and M. I. Hussein, 2012, “Wave motion in periodic flexural beams and characterization of the transition
between Bragg scattering and local resonance,” J. Appl. Mech. 79, 011003.

8/32



Bandgaps

Bandgap Analysis

For periodic materials and structures with symmetric unitcell
band gaps can be inferred WITHOUT Finite element +Bloch
theory = Solve K (k)g = w?*M(k)q.

Locked and free unitcell resonances are band edges of symmetric systems.

Lord Rayleigh, 1887, “On the maintenance of vibrations by forces of double frequency, and on the propagation of
waves through a medium endowed with a periodic structure,” Philos. Mag. 24, 145-159 .

L. Brillouin, Wave Propagation in Periodic Structures, 2nd ed. (Dover Publications, New York, 2003), pp. 1-68.

Mead, D.J.,1996,“Wave propagation in continuous periodic structures: Research contributions from Southampton,
1964-1995,” Journal of Sound and Vibration, 190, pp. 495-524.

Raghavan, L., and Phani, A.S., 2013, “Local resonance bandgaps in periodic media: theory and experiment,” Journal
of the Acoustical Society of America, Vol.134, Issue.3, pp. 1950-9159
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Bandgaps

Unitcell resonances vs. Bandstructure

. Unitcell resonance analysis will only reveal the edges but
not the dispersion structure.

. Then why unitcell resonance analysis?

Relatively mature field of inverse structural dynamics ‘

. Given the resonances of a finite unit cell what is the corre-
sponding configuration/design of the structure(s)?

. Band gap tailoring = inverse structural dynamics problem

10/32



Bandgaps

Illustrative Periodic Structures

Beam with periodic masses
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Beam with periodic resonators
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Bandgaps

Unitcell Resonances Are Important

1. Band edges are de-
cided by the resonant
frequencies of a sym-
metric unit cell under
locked and free boundary
conditions (Mead, JSV,
Vol.40 1975)

(Xiao et al. Phys.Lett.-A, 2011)

2. Determining the natural
frequencies of the unit
cell is sufficient!

Unitcell BCs for band edges

(@) locked and (b) free
boundary conditions.

How can we find the natural frequencies of the unitcell? FE,

PDEs ....7

Receptance coupling from Structural Dynamics.
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Bandgaps

Dynamic Receptance Analysis
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Unitcell resonances are the poles of H. H, depends on the normal
modes (wy, ¢,(x)) of the beam unit cell (background medium).

Parallel coupling
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Bandgaps

Beam Without Periodicity
M=0,m;=0,k;=0,¢c,=0
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Unitcell resonances are identical for both pinned and guided
unit cells = Zero bandgap width. Guided beam has a zero
frequency (rigid body) mode.
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Bandgaps

Beam With Periodic Masses
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Separation of symmetric and antisymmetric modes gives band gap.

15/32



Bandgaps

Beam With Periodic Resonators
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Sub-Bragg bandgap mechanism: rigid mode of guided unit cell



Bandgaps

Full Picture

ML
o
=~ =
)
£
~
@ﬁpﬁ@
&
@&7;@
S
@—J\?I\?
£
.

Two-fold periodicity is bet-
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Bandgaps

1z

Design Chart for Sub-Bragg Bandgap Width

et

k OO0 m
r r
dw = Bandgapwidth, w, = w/,%, k, = stiffness ratio,

m, = mass ratio.
Stronger coupling and heavier resonators enhance sub-Bragg

bandgap width.
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Bandgaps

Bandgaps in Frequency Response
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Bragg and Sub-Bragg Bandgaps are minima in frequency response.
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Acoustic Response

Material vs. Structure
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Structures made of materials vs. materials with structure.
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Acoustic Response

Multifunctional Applications—Acoustics —# 1

Do lighter, stronger and stiffer
materials sound better?
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Acoustic Response

Multifunctional Applications—Acoustics — # 2
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Acoustic Response

Multifunctional Applications—Acoustics — # 3
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Acoustic Response

Wave Response of Symmetric Sandwich Panels

An ideal core should maintain constant distance between face
sheets without allowing any relative sliding.
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£, eitx -wn

[
Core compressibility ‘L~ | ULLQ)-L ea % g:g: sheet
| i il

L0RX - wr) -

W, 1(kX - we)
® £ eilX - w) V. e
.

;

10X - W)

(i
H
"
o

W, €
f. ei(kx - W)

i

Coincidence (Wavenumber resonance): Wave
3 speeds in the panel match sound wave speed
Double-Wall-Resonance in the fluid (High transmission)

(High transmission)

o

Adapted from Moore & Lyon, JASA 1991
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Acoustic Response

Periodic Materials Can Help?

Can truss lattice materials can
offer a potential solution?

Provided core material properties
are tailored in a sandwich design.
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Acoustic Response

Shear Panel (Kurtze & Watters, 1956)
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High bulk modulus and low shear modulus (Metal Rubber?).
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Acoustic Response

Coincidence Panel (Warnaka, Holmers, 1969)
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High damping, high bulk and low shear modulus are required,
weight penalty?
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Acoustic Response

Mode Cancelling Panel (Moore & Lyon, 1990)
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Prospects

Concluding Remarks

. Structural approaches provide powerful tools to calculate
the width and location of Bragg and sub-Bragg bandgaps
induced by a local resonator.

. Bandgap tailoring can be posed as an inverse structural dy-
namics problems.

. Fundamental conflict between structural (light and stiff) and
acoustic requirement.

. Truss core materials are promising provided their dynamic
effective properties (shear and bulk modulus) are tailored.

. *Transformational acoustics ideas (Metal water from A.N.
Norris) may be applied in the core material designs?
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Prospects
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