

Phonon Transport in Periodic Materials with Feature Sizes of 1 nm to 1 µm

Alan McGaughey

Department of Mechanical Engineering Carnegie Mellon University, Pittsburgh PA

CMU: Ankit Jain, Jason Larkin, Eric Landry

U. Toronto: Sam Huberman, Cristina Amon

Support: NSF, AFOSR

What is a Phonon?

• Quantized lattice vibration in a periodic material with energy $\hbar\omega$

- Wave number (= 2π /wavelength), frequency, and polarization
 - → Define the *phonon mode*
- Primary carriers of thermal energy in semiconductors and dielectrics (Si, GaN, quartz)

Phonon Formula for Thermal Conductivity

Boltzmann transport equation + Fourier law

$$\implies k_n = \sum_i c_{v,i} v_{g,i,n}^2 \frac{\Lambda_i}{|\mathbf{v}_{g,i}|}$$

i:indexes over all phonon modes

 $c_{v,i}$: specific heat $\mathbf{v}_{g,i}$: group velocity

 Λ_i : mean free path

Application to Periodic Materials

Porous Film

How to define the phonons? What dispersion relation to use?

Length Scales in Phonon Transport

Bulk Silicon Accumulation

Phonon properties from first-principles calculations.

Boundary scattering important when mean free path > system size.

Outline

- 1. Introduction
- 2. Superlattices
- 3. Porous Thin Films
- 4. Summary

Proposed Phonon Transport Regimes

Superlattice Period Length, L

Mechanical Engineering

Carnegie Mellon

Experimental Evidence in Oxide Superlattices

Need interfaces of extremely high quality.

What Dispersion to Use?

Silicon/Germanium Superlattices

Questions:

- Can we predict experimental trends?
- How does sample quality affect phonon transport?

Samples:

- Si/Ge superlattices
- Stillinger-Weber potential
- T = 500 K

Molecular Dynamics (MD) Simulations

- Predict evolution of atomic positions/momentum using Newton's laws of motion.
- No assumptions about nature of phonon transport.

Si/Ge Superlattices with Perfect Interfaces

Thermal conductivity decreases with increasing period length.

Si/Ge Superlattices with Interfacial Mixing

Thermal conductivity *increases* with increasing period length.

Lennard-Jones Superlattices

- Base: argon, T = 20 K, species differ only in mass
- Predict phonon properties and thermal conductivity
- MD simulations and lattice dynamics calculations

Perfect and mixed interfaces

Phonon Lifetimes

Mechanical Engineering Carnegie Mellon

More Phonon Lifetimes

Frequency [LJ units]

Phonon Transport in Superlattices

- Superlattice dispersion always valid for perfect systems
- Interface mixing affects high frequency (short wavelength) modes
 - Superlattice dispersion a good approximation for most modes
- Bulk dispersion only a good approximation when period length >> wavelength (mode dependent effect)

Outline

- 1. Introduction
- 2. Superlattices
- 3. Porous Thin Films
- 4. Summary

Objective

Predict the thermal conductivity of a silicon structure like this:

in a few seconds.

Thin Film Model

Random Sampling of Free Paths

- For every phonon mode, do the following 1,000 times:
 - 1. Phonon-phonon free path from a Poisson distribution.
 - 2. Randomly select a starting point. Use group velocity vector to calculate phonon-boundary free path.
 - 3. Smaller of these two quantities is the nanostructure free path
- Average 1,000 nanostructure *free paths* to give the *mean free path*.

McGaughey and Jain, *APL* **100**, 061911 (2012).

Limited by Phonon-Phonon

Limited by Phonon-Boundary

In-Plane: Comparison to Experiments

Sandia: Experimental Measurements @ 300 K

- In-Plane Measurements: 16 samples, 500 nm thick
 - Pore separation: 500-900 nm
 - Pore diameter: 213-535 nm
 - Porosity: 0.07-0.38
 - Steady-state measurement
 - SAND2012-0127
- Cross-Plane Measurements: 4 samples, 500 nm thick
 - Pore separation: 500-800 nm
 - Pore diameter: 300-400 nm
 - Porosity: 0.20-0.28
 - Time-domain thermoreflectance
 - Hopkins et al., *Nano Letters* **11**, 107 (2011)

In-Plane Comparison

No evidence of coherent effects.

Cross-Plane Comparison

Phonon Transport in Porous Films

- Phonon properties obtained from first-principles can predict the measured thermal conductivities of silicon thin films.
- No evidence for coherent transport in in-plane direction for porous films.
- Unexplained cross-plane porous film thermal conductivities.

Outline

- 1. Introduction
- 2. Superlattices
- 3. Porous Thin Films
- 4. Summary

Summary

- "Coherent" phonons follow dispersion of secondary periodicity
 - Relevant length scale: wavelength (<10 nm at 300 K)
 - Evidence in experimental and modeling on high-quality superlattices
- "Incoherent" phonons scatter with boundaries
 - Interface or free surface
 - Relevant length scale: mean free path (<10 μm at 300 K in Si)

Bridge Length Scales to Promote Coherence

But what about variability in the pore size and surface roughness? Use temperature to adjust what phonon wavelengths are important.

Semiconductor superlattices

- Periodic, composite material with layers as thin as 1-10 nanometers.
- *Phonons* (quantized lattice vibrations) are the dominant thermal energy carriers.
- The electrical energy is carried by either *electrons* or *holes*.
- Phonon scattering at interfaces reduces *k* without degrading the charge transport, leading to high *ZT*.

$$ZT = \frac{S^2 \sigma}{(k)} T$$

Light grey: $Si_{0.78}Ge_{0.22}$ (7.4 nm)

In-Plane Direction

Interest in Porous Films

ENGINEERING: Thermoelectric Energy Conversion

$$ZT = \frac{S^2 \sigma T}{k_e + k_p}$$
 Is it small?

SCIENCE: "Coherent" Phonon Effects and Role in Thermal Transport

Vibrational Modes Emerge Based on Supercell Periodicity

Supercell Lattice Constant >> Primitive Cell Lattice Constant

Bulk Silicon from First Principles

 Harmonic & anharmonic lattice dynamics calculations for 34,992 phonons in the first Brillouin zone

•
$$T = 300 \text{ K}$$

$$k_{theory} = 132 \text{ W/m-K}$$

 $k_{bulk, experiment} = 145 \text{ W/m-K}$

Silicon phonon properties courtesy of Keivan Esfarjani, MIT.

Thermal Conductivity Prediction

Predicted from theory
$$\longrightarrow k_{CP,solid} = \sum_{i} c_{v,i} v_{g,i,CP}^2 \frac{\Lambda_i}{|\mathbf{v}_{g,i}|}$$

Measured $\longrightarrow k_{CP,matrix} = k_{CP,solid} \times (1-\phi), \ \phi = \text{porosity}$

experimentally

$$k_{IP,solid} = \sum_{i} c_{v,i} v_{g,i,IP}^{2} \frac{\Lambda_{i}}{|\mathbf{v}_{g,i}|}$$

$$k_{IP,matrix} = k_{IP,solid} \times \frac{1-\phi}{1+\phi} \qquad \text{Hashin Factor}$$

Thermal Conductivity Accumulation

Mechanical Engineering