
  

Film specifications: thickness, t: 500 nm; pore size, d: 100-500 nm; pore separation, a: 
100-800 nm; porosity,                     : 0.05-0.40
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Abstract
We predict the thermal conductivity of silicon thin films with a periodic arrangement of unfilled cylindrical pores and compare to 

experimental measurements. Lattice dynamics calculations, the Boltzmann transport equation, a Monte Carlo-based phonon-boundary 
scattering model, and finite element method calculations are used to identify the mechanisms of the thermal conductivity reduction. 

Introduction

Methodology

Phonon (Lattice vibration)

➢  Phonon thermal conductivity, 

C ph : Volumetric specific heat

Λ i : Mean free path, i.e., average 
distance traveled by phonon 
before scattering.

v g , i : Group velocity,
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Uniform sampling of phonon initial position 
inside the nanostructure volume 

Poisson distribution for phonon-phonon free 
path 

Λeff=min(Λ pp ,Λ pb)

Simulation Details

➢ Bulk phonon properties: 
Harmonic and anharmonic lattice 
dynamics calculations [3]

➢ Force constants: 
Density Functional Theory [4]

➢ Phonon boundary scattering:
Monte Carlo based phonon free 
path sampling [5]

➢ Effect of material removal: 
Finite element method calculations

➢ Nanostructure boundaries: 
Diffuse

Results
Bulk Material Solid Thin Film

Porous Thin Film

Porous thin film with square array 
of through cylindrical holes.

Cross-
plane

Thermal conductivity variation with film 
thickness in the in-plane direction.

Thermal Conductivity Accumulation Function

Thermal conductivity variation with 
porosity for heat flux in the in-plane 

direction

Accumulation function for solid thin films Accumulation function for porous thin 
films of porosity 0.1 and 0.5 

Conclusions
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➢ In-plane thermal transport can be explained using free path model of phonons.
➢ Unexplained thermal conductivity for cross-plane direction of heat flow.
➢ Thermal conductivity accumulation function to define system thermal length scale.

In-plane

Thermal conductivity variation with 
porosity for heat flux in the cross-plane 

direction
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