
On the Relationship between Learning Sequence and Rate of Acquisition 
 

Karen Jesney • University of Southern California 
 

Overview:  The Gradual Learning Algorithm (GLA; Boersma 1998, Boersma & Hayes 2001) 
predicts that more frequent input forms will be acquired earlier than less frequent input forms – a 
fact that has been commonly taken as a virtue of the model (e.g., Boersma & Levelt 2003, Curtin 
& Zuraw 2002, Jarosz 2010). The GLA also predicts, however, that the rate of learning for more 
frequent input forms should be faster than the rate of learning for less frequent input forms.  In 
other words, the model predicts that sequence and rate of acquisition are related; structures 
acquired earlier in the course of learning will be acquired more rapidly, while those that are 
acquired relatively later will be acquired more slowly.  This paper explicates these predictions 
and argues that they are not consistently supported by child language data. 
 

Predictions of the learning model:  The relationship between sequence and rate of acquisition 
in the GLA stems from two key properties of the model: the learner is error driven, and, in 
common implementations, target forms are sampled in accordance with their probability in the 
target language.  As a result, the ranking values of constraints associated with more frequent 
target forms are adjusted more often than are those associated with less frequent target forms.  
This means that more frequent forms are mastered earlier and that the progression from the first 
accurate realizations to 100% accuracy occurs more rapidly for more frequent forms. 
 

To illustrate this effect I constructed a toy 
language with the four forms /A/, /B/, /C/ and 
/D/, each of which provides evidence about the 
ranking of a markedness constraint (*A, *B, 
etc.) and a conflicting faithfulness constraint 
(FAITH-A, FAITH-B, etc.).  An initial M >> F 
ranking was assumed.  Figure 1 shows the 
mean results of 10 GLA simulations conducted 
in Praat (Boersma & Weenink 2014) based on 
an input distribution where the probability of 
/A/ was twice the probability of /B/, the  

Figure 1: Results of GLA learning simulations 

 
probability of /B/ was twice the probability of /C/, etc. Mappings for each input form were 
sampled after every ten pieces of learning data. As expected, the most frequent input form, /A/, 
began to be realized accurately first, while the least frequent input form, /D/, was the last to 
begin to be realized accurately.  Furthermore, it took an average of only 40 learning trials for 
input /A/ to shift from less than 10% accurate realization to over 90% accurate realization, while 
it took 320 learning trials for input /D/ to make the same transition.  Inputs /B/ and /C/ fell 
between inputs /A/ and /D/ in terms of both sequence and rate of learning.    

Child language data:  Longitudinal corpus data allows us to test whether the predicted 
relationship between sequence and rate of acquisition holds consistently in child language.  Data 
from two English-acquiring children are considered here: Trevor (Compton & Streeter 1977, 
Pater 1997) and Amahl (Smith 1973).  For each child all target utterance-initial onset clusters 
and utterance-final coda clusters were extracted from the corpus.  Target clusters found in 
unstressed syllables and those formed through morphological concatenation were excluded. For 
Trevor this yielded a total of 1633 tokens distributed across 40 cluster types (rhotic dialect), 
while for Amahl it yielded a total of 1496 tokens distributed across 51 cluster types (non-rhotic 
dialect).  Target clusters were coded as accurate if they were produced as a sequence of two 
consonants, regardless of segmental changes. Additional details are given in the table on page 2. 
 



For both Trevor and Amahl, the 
probability of all clusters being 
realized accurately increased 
significantly with age. In both 
cases, however, a logistic 
regression model with the factors  

 

 Trevor  (0;11-3;1) Amahl (2;2-3;9) 
 onset coda onset coda 
rising sonority 877   63 845   44 
falling sonority 120 573 199 408 
total 997 636 1044 452 

 

 

age, syllable position, and sonority fully crossed 
provided a better fit to the data than any simpler 
model (Trevor: p < .01, Amahl: p < .001).  This 
indicates that the rate of acquisition varied 
across cluster position and sonority profile.   
 

Figures 2 and 3 plot the predicted probability of 
accurate realization for the different cluster 
types based on the fitted logistic regression 
models.  For Trevor, the overall pattern largely 
mirrors that predicted by the GLA. The cluster 
types that Trevor begins to produce earliest – 
rising and falling sonority coda clusters – reach 
a high level of accuracy at a faster rate than the 
later-acquired cluster types.  For Amahl, on the 
other hand, the pattern directly contradicts the 
predictions of the GLA.  As Figure 3 shows, 
falling sonority onset clusters are the last cluster 
type that Amahl begins to realize accurately, but 
his rate of acquisition for this cluster type is 
more rapid than for any other type. 
 

Implications:  The predictions of the GLA 
outlined here extend to all gradual error-driven 

Figure 2: Trevor’s accurate cluster realization 

 
 

Figure 3: Amahl’s accurate cluster realization 

 
learning models that sample based on frequency (e.g., Noisy Harmonic Grammar – Boersma & 
Pater to appear, MaxEnt-OT – Goldwater & Johnson 2003).  Comparisons with child data, 
however, indicate that the relationship between sequence and rate of acquisition is not as 
straightforward as these models predict.  This points to the necessity of incorporating other 
factors, such as input restructuring and lexical growth, into models of phonological learning. 
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