For help with question 2, refer to Example 1.

2. Rewrite each equation in slope *y*-intercept form.

a)
$$2x + y - 1 = 0$$

b)
$$3x - y - 5 = 0$$

c)
$$2x + y - 4 = 0$$

d)
$$5x + y + 8 = 0$$

e)
$$x - y + 1 = 0$$

f)
$$2x - y - 3 = 0$$

For help with question 3, refer to Example 2.

3. Rewrite each equation in slope *y*-intercept form, then state the slope and the *y*-intercept.

a)
$$2x - y + 4 = 0$$

b)
$$3x + y - 2 = 0$$

c)
$$x - y + 4 = 0$$

d)
$$3x + y + 11 = 0$$

e)
$$8x - y - 5 = 0$$

f)
$$2x + y + 7 = 0$$

4. Rewrite each equation in slope *y*-intercept form. State the slope and the *y*-intercept of each.

a)
$$5x - 5y - 15 = 0$$

b)
$$2x - 3y + 12 = 0$$

c)
$$8x + 4y - 20 = 0$$

d)
$$x - 2y + 10 = 0$$

e)
$$x - 5y + 15 = 0$$

f)
$$3x - 4y + 12 = 0$$

g)
$$8x - 6y - 36 = 0$$

h)
$$3x + 6y + 18 = 0$$

Apply the Concepts (

For help with question 5, refer to Example 3.

- **5.** A sightseeing train runs tours at four different times on Saturdays. An adult ticket is \$3 and a child's ticket is \$1. One Saturday, the total ticket revenue was \$750. On this day, 150 tickets were sold for the first tour, 95 for the second, 125 for the third, and 96 for the fourth.
 - a) Write an equation to model the total revenue for this Saturday.
 - **b)** Rearrange the equation to isolate the variable representing children's tickets.
 - c) Find the total number of children's tickets sold on this Saturday.

Math Connect

A 5-star sightseeing

train will soon be

new Qinghai-Tibet

railway in China. The transparent

views on all sides.

be able to shower on the train and enjoy dance performances and karaoke. A sightseeing holiday on this train will cost over \$1000 per day.

Passengers will

cars will allow

running on the

Model With Formulas, pages 174-183

a)
$$w = \frac{A}{I}$$

b)
$$I = \frac{P - 2w}{2}$$

c)
$$b = y - mx$$
 d) $r = \frac{C}{2\pi}$

d)
$$r = \frac{C}{2\pi}$$

e)
$$h = \frac{V}{hv}$$
 f) $h = \frac{2A}{b}$

f)
$$h = \frac{2A}{h}$$

a) 112.5 km **b)**
$$s = \frac{d}{t}$$
; 75 km/h

c}
$$t = \frac{d}{s}$$
; 1.75 h

$$\mathbf{D}_{1} = \frac{1}{L}; 12 \text{ KI}$$

$$c_{1}^{*} = \frac{1}{5}; 1.751$$

\$2500

a)
$$t = \frac{I}{p_r}$$

b}
$$r = \frac{I}{Pt}$$

b)
$$r = \frac{l}{Pt}$$
 c) $P = \frac{l}{rt}$

		**			
a)	1	Р	J.	t	
-[1980	2200	0.15	6	
ĺ	240	800	0.1	3	
	625	625	0.25	4	
	3300	2000	0.15	11	
	450	1800	0.05	5	
	4400	5000	0.04	22	
	450	600	0.025	30	
	522	725	0.08	9	

- . \$3200
- . Graham: 45 km/h; Colin: 55 km/h
- . No, the two girls will be 13 km apart.
- . Answers will vary.
- . 85 words per minute

+ a)
$$C = \frac{5(F-32)}{9}$$

- e) The graph shows that the lines are very close to each other.
- . 30 600 kPa
- . a) \$32 per person
- b) \$42 per person
- c) Since both halls charge \$16 800 for an event with 400 people, neither hall is a better deal than the other.
- . Raymond: 1.06, Jesse: 1.23, Tran: 1.26, Harvinder: 1.11, Igor: 1.23; The coach should choose Raymond, because he has the lowest WHIP.

- 4.4 Convert Linear Equations From Standard Form, pages 184-189
- **1.** a) m = -3, b = -6; y = -3x 6

b)
$$m = \frac{1}{4}$$
, $b = 2$; $y = \frac{1}{4}x + 2$

c)
$$m = \frac{5}{2}$$
, $b = -2$; $y = \frac{5}{2}x - 2$

d)
$$m = 2, b = 1; y = 2x + 1$$

2. a)
$$y = -2x + 1$$

b)
$$y = 3x - 5$$

$$c)y = -2x + 4$$

d)
$$y = -5x - 8$$

e)
$$y = x + 1$$

$$\mathbf{f}\}y = 2x - 3$$

3. a)
$$y = 2x + 4$$
; $m = 2$, $b = 4$

b)
$$y = -3x + 2$$
; $m = -3$, $b = 2$

c)
$$y = x + 4$$
; $m = 1$, $b = 4$

d)
$$y = -3x - 11$$
; $m = -3$, $b = -11$

e)
$$y = 8x - 5$$
; $m = 8$, $b = -5$

$$f$$
} $y = -2x - 7$; $m = -2$, $b = -7$

4. a)
$$y = x - 3$$
; $m = 1$, $b = -3$

b)
$$y = \frac{2}{3}x + 4$$
; $m = \frac{2}{3}$, $b = 4$

c)
$$y = -2x + 5$$
; $m = -2$, $b = 5$

d)
$$y = \frac{1}{2}x + 5$$
; $m = \frac{1}{2}$, $b = 5$

e)
$$y = \frac{1}{5}x + 3$$
; $m = \frac{1}{5}$, $b = 3$

f)
$$y = \frac{3}{4}x + 3$$
; $m = \frac{3}{4}$, $b = 3$

g)
$$y = \frac{4}{3}x - 6$$
; $m = \frac{4}{3}$, $b = -6$

h)
$$y = -\frac{1}{2}x - 3$$
; $m = -\frac{1}{2}$, $b = -3$

- **5.** a) 3x + y = 750, where x represents the number of adult tickets and y represents the number of children's tickets.
 - **b)** y = -3x + 750
 - c) 324
- **6.** Subtract 3x 3 from both sides and then divide both sides
- 7. a)

- d) If C = 0, then the graph passes through the origin.
- 8. -11
- 9. 5
- 10. -35