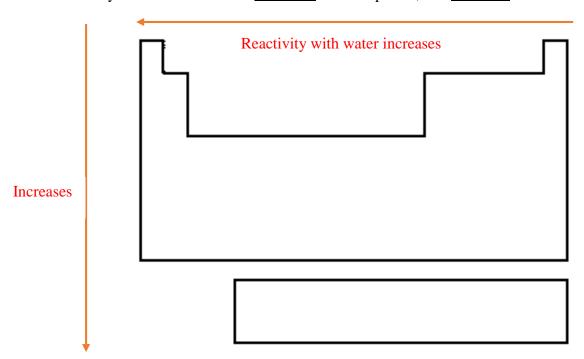

Periodic Table Trends in Reactivity

Recall: Draw Bohr models for Na and K. Write the electron configuration.


Which is more reactive with water: Na or K? Why?

E
See explanation below
E
See explanation below

Explanation: Valence electrons are located in the <u>outermost</u> energy level of an atom. The elements properties because they have valence electrons in <u>similar</u> configurations. The one valence electron in $\underline{\mathbf{K}}$ is lost more easily than the one valence electron in $\underline{\mathbf{Na}}$ because it is located further from the positively charged nucleus (making it more reactive than Na).

Similarly, Ca is <u>more</u> reactive than Mg for the same reason. Ca and Mg are both <u>less</u> reactive than Na and K.

Reactivity of metals with water <u>decreases</u> across a period, and <u>increases</u> down a family.

An atom is more \underline{stable} when it has a full valence shell. Noble gases are stable (unreactive) due to their \underline{full} valence shells.