
1) Alpha Decay (α)

Releases a **charged** helium **nucleus** known as an alpha particle, α .

Definition	Radiation type (symbol)	Charge of Radiation	What is emitted?	Special characteristics
- Emits a helium nucleus (alpha particle)	- Alpha particle (α)	- +2 (two protons and two neutrons in a helium nucleus)	- A helium nucleus - ⁴ ₂ He	SlowStopped by paper or skin

Example:

$$^{210}_{84}$$
Po $\rightarrow ^{206}_{82}$ Pb + $^{4}_{2}$ He

- The masses (when added up) are the SAME on both sides
- The charges on both sides are the SAME

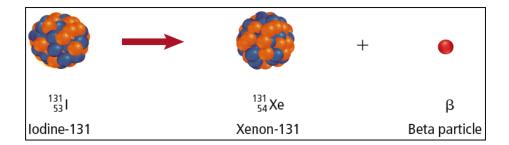
When an alpha particle is <u>emitted</u>, it will crash into other <u>particles</u> until it finds two electrons –it will become a <u>Helium atom</u>.

Parent nucleus: the <u>original</u> radioactive atom present <u>before</u> decay occurs

Daughter nucleus: the **product** atom of radioactive decay

Label the parent nucleus and daughter nucleus in the above reaction

 $^{210}_{84} \text{Po}$: the parent nucleus


²⁰⁶₈₂Pb :the daughter nucleus

2) Beta Decay (β)

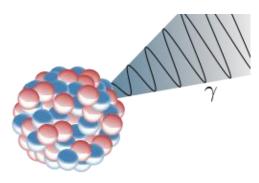
Releases an <u>electron</u> known as a beta particle, β . The emitted beta particle has a <u>mass</u> of 0 and a <u>charge</u> of -1 because it is an electron.

In this reaction, a <u>neutron</u> is very <u>unstable</u> and can turn into an <u>electron</u>, <u>proton</u>, and <u>neutrino</u>. When that happens, the proton stays put, while the electron is <u>released</u>.

Definition	Radiation type (symbol)	Charge of Radiation	What is emitted?	Special characteristics
- Unstable nucleus emits a beta particle (electron)	- Beta particle (β)	-1 (electron)	- Electron - $_{-1}^{0}e$	- Can penetrate a few sheets of Al foil

Example:

$$^{14}_{6}C \rightarrow ^{14}_{7}N + ^{0}_{-1}e$$


- The mass and the charges are the SAME on both sides

3) Gamma Decay

Does not release a particle, it releases <u>energy</u> known as a <u>gamma</u> ray (γ). The nucleus has <u>extra</u> energy (in excited state) and <u>releases</u> it in the form of a gamma ray.

This type of radiation produces **extremely high** energy.

Definition	Radiation type (symbol)	Charge of Radiation	What is emitted?	Special characteristics
An excited state atom emits its extra energy through emitting a gamma ray	Gamma ray (γ)	0 (no charge)	Energetic wave ('light')	Can penetrate a few cm of lead

Note: an asterisk () is used to show an excited state particle

Example:

$$^{237}_{93}Np* \rightarrow ^{237}_{93}Np + ^{0}_{0}\gamma$$

- The mass and the charges are the same on both sides

<u>Summary</u>: Radioactivity is <u>nothing</u> like a chemical reaction. New atoms are <u>made</u>, not just <u>rearranged</u>!

Two things to look out for:

- 1) The sum of the mass numbers never change Ex. $^{128}_{52}$ Te $\rightarrow ^{4}_{2}$ He $+ ^{124}_{50}$ Sn 124+4=128 (r.s = l.s)
- 2) The sum of the charges in the nucleus never changes Ex. $^{128}_{52}$ Te $\rightarrow ^{4}_{2}$ He + $^{124}_{50}$ Sn 50+2=52 (r.s = l.s)

Practice:

Complete the following nuclear equations. Label each as alpha, beta or gamma decay in the space provided.

$$2._{38}^{90} \text{ Sr} \rightarrow _{39}^{90} \text{ Y} + \underline{_{-1}^{0}} \beta \underline{}$$
 beta_____

3.
$$^{12}_{6}$$
 K* \rightarrow $_{}$ $^{12}_{6}$ K $_{}$ + $^{0}_{}$ γ gamma_____

4.
$$^{144}_{60}$$
 Nd $\rightarrow ^{140}_{58}$ Ce $_{-}$ + $^{4}_{2}$ He ____alpha_____

Complete the following radioactive decay equations using the given type of decay.

1. (alpha decay)
$$^{255}_{103}$$
 Lr \rightarrow ______251 Md____ + _____4 He_____

3. (gamma decay)
$$^{257}_{104} Rf^* \rightarrow \underline{\hspace{1cm}}^{257}_{104} Rf \underline{\hspace{1cm}} + \underline{\hspace{1cm}}^{0}_{0} \gamma \underline{\hspace{1cm}}$$