Nuclear Reactions - Fission

Prior knowledge: What do you know about nuclear reactions?

- They are strong, explosive
- Atomic bombs
- They can be dangerous and potentially harmful

Define- **Nuclear reaction:** process by which the nucleus of an atom changes by emitting particles or energy

When we think about nuclear reactions, sometimes we think about nuclear bombs, nuclear reactors, etc.

Think/pair/share: Fill in the following chart using your textbook and/or phones. You may work in pairs.

Artificial Radioactivity	Nuclear Reactions and the Effects on
	Humans
What is it?	Examples (list 5):
The process of making a non-radioactive	1. can change the shape of DNA or break it
substance become radioactive by hitting it	entirely causes cells to die
with alpha particles; it does not occur	2. can lead to cancer if there are mutations
naturally	caused in the DNA
	3. products of uranium decay in rocks can be
Why is this useful/not useful?	inhaled
It is useful to prepare radioactive species for	4. medical X-rays (positive effect)
uses in medicine or treating diseases such as	5. radiation from the sun comes to Earth
cancer	
	Explain how the above examples are caused.
Example:	- radiation comes into the body and gets
$^{24}_{12}Mg + ^{2}_{1}H \rightarrow ^{22}_{11}Na + ^{4}_{2}He$	absorbed – this gives extra energy to the body
-magnesium is not radioactive normally	tissues and can harm DNA, cells, or penetrate
	through the body

There are two types of nuclear reactions: Fission and Fusion

All of these reaction are **<u>DIFFERENT</u>** than chemical reactions. There is NO <u>conservation of</u> <u>mass</u>. Rather, the actual nucleus of the atom changes. Small changes in mass = <u>**HUGE**</u> changes in energy.

What did Albert Einstein discover about radioactivity?

Mass is related to energy $\rightarrow \underline{\mathbf{E}} = \mathbf{mc}^2$

What does this mean?

In nuclear reactions, the products have <u>less</u> mass than the mass of the reactants or <u>original</u> materials.

Small amount of mass change results in HUGE amounts of energy (see equation below).

Nuclear Fission

Involves the splitting of one heavy **<u>nucleus</u>** to produce 2 (or more) smaller **<u>nuclei</u>**, **<u>neutrons</u>**, and **<u>energy</u>**.

Example: Uranium-235 is hit with a neutron and splits in barium, krypton, and 3 neutrons.

 $^{235}_{92}$ U + $^{1}_{0}n \rightarrow ^{141}_{56}$ Ba + $^{92}_{36}$ Kr + $3^{1}_{0}n$