Date: Name: _	
---------------	--

Introduction to Atomic Theory

Recall: draw a diagram of an atom with as much detail as possible

3 electrons (negatives) on outer shells; 4 neutrons (neutral) and 3 protons (positives) inside the nucleus (center of the atom)

atom: <u>smallest</u> particle of an element that retains the <u>chemical</u> identity of the element Three laws giving elements of atoms:

- 1. Law of conservation of matter: matter cannot be created or destroyed
- 2. Law of constant composition: the ratio must always be preserved (ex. $H_2O \rightarrow 2$ H's & 1 O)
- 3. Law of multiple proportions: when different masses of one <u>element</u> combine with a specific <u>mass</u> of another <u>element</u>, the mass <u>ratios</u> of the first element are small, whole number ratios.

Early Models of the Atom

Describe the work of the following scientists. Use the following questions as a guide. You may use your textbook or your phone/device to help you do your research.

- 1. What are their main contributions to modern atomic theory?
- 2. What was their idea of the model of the atom? *Include diagrams as necessary*.
- 3. Did they have any particular discoveries? What were they?
- 4. What experiments did they perform that led to discoveries?

Scientist	Contribution to the modern atomic theory
John Dalton	 Introduced the first atomic theory All atoms of a given element are identical Elements are made up of tiny particles called atoms No 2 elements have the same atoms Billiard ball model (thought it was just a sphere) Small dense solid atom

Date: ______ Name: _____

William Crookes	 CRT – glass tube in vacuum, current produces beam (goes from negative to positive) cathode to anode, fluorescent glows Crookes tube – two electric terminals connected to low and high voltages, fluorescence made from beam of particles, cathode rays defect away from negative and towards positive – these are electrons
J.J. Thomson	 Identified the cathode rays in CRT as electrons since they were negatively charged "Raison bun model" (plum pudding model) of the atom – positive charges all around (the bun) and negative pieces inside (the raisons) – everything was floating around in one big ball
Marie and Pierre Curie	 Analyzed uranium to see Becquerel rays Uranium was the source of the emission – later Marie gave these emissions the name radioactivity and defined it as the spontaneous emission of radiation of the nucleus of an atom Discovered polonium and radium, amount of energy based on amount of starting material; Marie won two Nobel prizes Marie died from radiation; curie = unit of radiation
James Chadwick	 proved the existence of neutrons – atomic nuclei had neutral particles as well no electric charge and similar in size to proton hard to detect because it has no charge – stable in the nucleus, unstable outside of the nucleus
Ernest Rutherford	 father of nuclear physics; founder of alpha, beta, and gamma Direct positive beam of particles at a piece of gold foil, found that most particles went through the foil, some were deflected at an angle and some bounced straight back Concluded that atom is mostly empty space and has a positive core – discovered the nucleus – came up with the planetary model of the atom – electrons were orbiting, nucleus full of mass (protons) Named the positive particle the proton (equal and opposite to the electron but 1800 times heavier
Niels Bohr	 Organized the atom like a solar system First one to make orbits and organized the orbits according to their energy levels Won nobel prize Made the Bohr model – neutrons and protons are in the center, different valence shells of electrons are orbiting around the nucleus