Chronic Pain Management in Cancer: An exploratory analysis of electroencephalograph activity during virtual reality pain distraction therapy

HE UNIVERSITY OF RITISH COLUMBIA

Bernie Garrett¹, Henry Fu², Gordon Tao¹, Elliott Cordingley¹, Zahra Ofoghi², Crystal Sun¹, Teresa Cheung^{2,3,4}, Tarnia Taverner¹, Diane Gromala²

1. University of British Columbia, Canada, 2. Simon Fraser University, Canada, 3. Surrey Memorial Hospital, Fraser Health Authority, Canada, 4. Behavioural and Cognitive Neuroscience Institute, SFU, Canada

INTRODUCTION

Guided mindfulness meditation delivered using virtual reality (VR) is a promising adjunctive approach to chronic pain management.

Electroencephalography (EEG) may help further explain potential neurological changes occurring in the brain during VR activity.

OBJECTIVES

- 1. To assess how EEG waveforms changed during and after a VR-guided meditation experience in participants with cancer-related chronic pain.
- 2. To explore techniques for recording EEGs during VR experiences.
- 3. To explore the association between pain and EEG waveform power.

SETTING

Cancer patients with chronic pain currently enrolled in a randomised controlled trial to explore the value of VR as an adjunctive therapy pain management were recruited.

Participants:

- Purposively selected from an ongoing trial involving VR-based mindfulness meditation for chronic cancer pain
- Aged ≥16 years, with past or ongoing cancer treatment
- Chronic pain with Numerical Rating Scale (NRS) of ≥ 4
- Able to use VR- guided meditation application
- Able to communicate in English
- Had previously experienced a pain reduction ≥ 1 on the NRS during the trial

ACKNOWNLEDGEMENTS

This work was supported by the Lotte and John Hecht Memorial Foundation (grant 4110).

METHODS

Equipment and Procedures

- 1. Used a 64-channel EEG in 10-20 configuration.
- 2. Exposed to a single session with 8 min rest : 30 min VR meditation : 8 min rest.
- 3. EEG power was compared between each condition using cluster-based permutation testing.
- 4. Topographical analysis and coherence analysis.
- 5. Pain was assessed verbally at 5 time points and analyzed using repeated measures correlation.

Timeline of recording – rest and meditation conditions. NRS: numerical rating scale

Recording computer screen capture

Box plot of power level

Topography of power spectrum

Power increased in the beta and gamma bandwidths during the VR therapy (P<.025).

Observed coherence changes primarily:

- In the theta, alpha and gamma bands
- P<.0025

Coherence difference between channel pairs

RESULTS

• Between the frontal, parietal, and occipital cortices

RESULTS

SFU

SIMON FRASER

UNIVERSITY

No significant relationships between pain scores and EEG power variations were observed.

Numerical rating scale scored after each condition

Participant	NRS score				
	Pre	Med1	Med2	Med3	Post
S01	4	2	2	2	1
S02	4	3	0	0	1
S03	7	4	7	5	3
S04	6	5	4	4	3
S06	5	6	5	4	5
S07	3	5	4	2.5	4
S10	3	3	2	2	2

CONCLUSIONS

- The study demonstrated specific VR-related EEG changes during the VR therapy.
- Provides novel EEG recording and analysis methods that can be used to investigate neurophysiological changes in VR pain applications
- These approaches may guide further studies to explore and identify brain regions and wave bands with respect to VR therapies for chronic pain.

REFERENCES

[1] Fu H, Garrett B, Tao G, Cordingley E, Ofoghi Z, Taverner T, Sun C, & Cheung T. Virtual Reality–Guided Meditation for Chronic Pain in Patients With Cancer: Exploratory Analysis of EEG Activity. JMIR Biomed Eng 2021;6(2):2021: E26332.

[2] Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:156869.

CONTACT

Dr. Bernie Garrett School of Nursing, University of British Columbia T201-2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada Phone: 1 604 822 7443 Email: bernie.garrett@nursing.ubc.ca