
Lovász Local Lemma: A Survey of Constructive
and Algorithmic Aspects, with an Application to

Packet Routing
CPSC 536N - Term Porject

Bader N. Alahmad∗

1 Introduction
The Lovász Local Lemma (LLL) is a mathematical statement that gives hope in
a complex world of interdependent events. It says, briefly, that bad events can be
avoided altogether with positive probability even if each is highly likely to occur, but
will not certainly occur. There is even more to it: The bad events can be dependent,
and with limited dependence, still they can be avoided.

In its original guise, the Lemma is non-constructive, in that it asserts that a
collection of bad events can be avoided, or not, but in no way does it give a method
for finding the points in the sample space which lie in the intersection of the comple-
ments of those bad events, if any. Non-constructive mathematical assertions of this
sort are typical of the probabilistic method , where the existence of certain objects of
interest is established as an event over a suitable probability space, with this event
occurring with positive probability.

In this article, we will present and discuss an efficient randomized algorithm,
designed by Moser and Tardos [5], for finding exactly those points in the sample
space that do not belong to all the bad events simultaneously, if any, thus giving us
a route for avoiding all such events.

Without further ado, let us get to the crux of the matter. Let A = {A1, . . . , Am}
be a finite collection of events over a probability (measure) space, say (Ω,F , P).
Then

P(Ac
1 ∩ · · · ∩ Ac

m) = 1− P(A1 ∪ · · · ∪ Am) > 1−
m∑

i=1

P(Ai) (1)

by the finite additivity of probability measures. We start off by demanding a less
ambitious requirement than the one we aim at presenting in this article: We are
interested in showing that, under certain conditions, P(Ac

1 ∩ · · · ∩ Ac
m) is strictly

positive. What the latter means is that, if the events Ai are “bad” events, then we
can avoid the situation where the bad events take place simultaneously (i.e., achieve
P(Ac

1∩· · ·∩Ac
m) > 0). This amounts to saying that we would like to make sure that

the set {Ac
1 ∩ · · · ∩Ac

m} is not empty, and that P({ω : ω ∈ Ac
1 ∩ · · · ∩Ac

m}) > 0. Our
∗Ph.D. student, Department of Electrical and Computer Engineering, University of British

Columbia, Vancouver, BC, Canada; bader@ece.ubc.ca.

1

bader@ece.ubc.ca

setup, however, consists of a finite sample space, so null sets (those of measure zero)
are not a concern, and thus the condition that {Ac

1∩· · ·∩Ac
m} 6= ∅ suffices. Consider

the simpler case when the events A1, . . . , Am are symmetric with respect to their
likelihood of occurrence, i.e., P(Ai) 6 p for some p ∈ [0, 1), for all i ∈ {1, . . . ,m}.
Then the RHS of Eqn. (1) stipulates that mp < 1 is a necessary condition for
P(Ac

1 ∩ · · · ∩ Ac
m) > 0 to hold. Therefore p < 1/m is necessary. The last condition

says that as the number of events increases, the probability of occurrence of each
must become smaller (drastically in m) in order to achieve P(Ac

1 ∩ · · · ∩ Ac
m) > 0.

The main reason our condition on the event probabilities is stringent is that our
formulation so far does not consider independence; we are assuming nothing about
how the events are dependent among each other. The situation becomes better
when we know the maximum number of events upon which any event in A depends;
call this number d. At another extreme, if the events are mutually independent,
meaning that for every {i1, . . . , ik} ⊆ {1, . . . ,m}, P

(⋂k
j=1 Aij

)
=
∏k

j=1 P(Aij), then
trivially

P(Ac
1 ∩ · · · ∩ Ac

m) =
m∏

i=1

(1− P(Ai)) =
m∏

i=1

(1− p), (2)

which is strictly positive if, and only if, p < 1 (we have assumed in doing so that
if A1, . . . , Am are independent, then Ac

1, . . . , A
c
m are independent. This fact needs

proof, which we provide in Appendix A.) If we know that every event depends on at
most d other events in A, then Erdős and Lovász [3] proved that 4pd 6 1 is sufficient
for P(Ac

1 ∩ · · · ∩ Ac
m) > 0 to hold. Spencer [8] weakened the condition above to

p
(d + 1)d+1

dd
6 1.

Since p (d+1)d+1

dd = p(d+1)
(
1 + 1

d

)d
6 ep(d+1) (e is the base of the natural logarithm),

it follows that if ep(d + 1) 6 1, then it must be the case that p (d+1)d+1

dd 6 1. Thus
the condition ep(d + 1) 6 1 is sufficient. Finally, Shearer [7] further weakened the
condition to

p
dd

(d− 1)d−1
6 1,

for d > 2 and p 6 1/2 for d = 1, from which it follows that epd 6 1 is sufficient.
To demonstrate the applicability of the symmetric LLL, consider as example the

problem of coloring the vertices of a hypergraph with two colors, say red and blue.
We say a hypergraph is 2-colorable if there exists a coloring of its vertices such
that no edge has a single color for all of its vertices (we call an edge whose vertices
are all colored by the same color monochramatic). Formally, given a hypergraph
G = (V, E), and assuming that every e ∈ E has at least k vertices, is there a
coloring c : V → {r, b} such that no e ∈ E is monochromatic? It turns out that such
a coloring exists if the following condition holds: every edge in E does not intersect
with more than 2k−1/e other edges (here e is the base of the natural logarithm).
Consider the following simple randomized procedure for coloring the vertices V : set
the color of every v ∈ V independently and uniformly at random to one of {r, b}
(by flipping a coin for every vertex independently). Associate with every e ∈ E

the bad event Ae, where Ae
def
= e is monochromatic. Then we would like to avoid

the situation where all edges are monochromatic, which translates to requiring that

2

Figure 1: Example Hypergraph with 4 edges and 7 vertices. Edges e1, e2 and e3

instersect at v3. (http://en.wikipedia.org/wiki/Hypergraph).

P
(⋂

e∈E Ac
e

)
> 0. Let V (e) denote the set of vertices that edge e contains. Since

our algorithm sets the color of every vertex independently, it follows that

P(Ae) = P(e is monochromatic)
= P(c(v) = r for every v ∈ V (e)) + P(c(v) = b for every v ∈ V (e))

6 1/2k + 1/2k = 1/2k−1,

where the last inequality follows because every edge has at least k vertices. Now the
condition that every edge intersects with at most 2k−1/e other edges implies that an
edge being monochromatic is affected by the coloring of at most 2k−1/e other edges.
Thus every event Ae is dependent on at most 2k−1/e other events, and it follows
that our dependency parameter is d = 2k−1/e. Thus with p = 1/2k−1, Shearer’s
condition epd 6 1 is satisfied: e 1

2k−1
2k−1

e
6 1, and the result follows.

In this article, however, we are concerned with an algorithm that is actually
capable of “efficiently” finding the set of ωs that constitute {Ac

1 ∩ · · · ∩ Ac
m}. To

prepare for a more general setting, we turn our attention to the asymmetric, general
form of the LLL.

2 Algorithmic Lovász Local Lemma

2.1 Theoretical Setup
The difficulty of applying the LLL lies in pinpointing the dependencies between the
bad events that we want to avoid. In order to facilitate “visualizing” the dependen-
cies, we encode the bad events and their dependencies in the so-called dependency
graph. Given a set A = {A1, . . . , Am} of events in which every event depends on at
most d other events, we construct a graph G = (V, E) whose vertices are the events,
i.e., V = A with |V | = m, and an edge exists between two vertices, say Ai and
Aj, iff Ai is dependent upon Aj. Thus the degree of every vertex is at most d. For
every i ∈ {1, . . . ,m}, let N(Ai) denote the set of neighbors of Ai in G. Every event
is dependent on itself, because P(Ai) = P(Ai ∩ Ai) = P(Ai)P(Ai) is satisfied either
when P(Ai) = 0, which does not happen in our setting (we excluded null events),
or when P(Ai) = 1, which we assumed does not occur in our setting as well. Define
N+(Ai) = N(Ai) ∪ {Ai}. Then Ai is mutually independent of A \N+(Ai).

3

http://en.wikipedia.org/wiki/Hypergraph

For example, consider the problem k-CNF. We are given as input a Boolean
formula φ = c1 ∧ · · · ∧ cm of m clauses over n variables x1, . . . , xn, where each clause
is the disjunction of exactly k literals. The problem is determine whether or not φ
is satisfiable. It is known that k-CNF is polynomial-time decidable when k = 2, and
is NP-Complete for k > 3. Let Ai be the event that clause ci is NOT satisfiable,
i ∈ {1, . . . ,m}. So Ai is a bad event that we need to avoid, for all i, so that φ is
satisfiable, and thus {Ac

1 . . . , Ac
m}

def
= φ is satisfiable. At the worst, every variable in

every clause will appear in all the other m − 1 clauses, and thus every assignment
of every variable in clause ci will affect the value of all the other m− 1 clauses, thus
d 6 k(m− 1). For instance, the following 3-CNF formula

φ = (x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
c1

∧ (x1 ∨ x3 ∨ x4)︸ ︷︷ ︸
c2

∧ (x4 ∨ x5 ∨ x6)︸ ︷︷ ︸
c3

∧ (x7 ∨ x8 ∨ x9)︸ ︷︷ ︸
c4

(3)

has the dependency graph shown in Figure 2.

𝑐1 𝑐2

𝑐4 𝑐3

Figure 2: Dependency graph of φ in Eqn. (3).

Next we state the general form of the LLL, from which the proof of the symmetric
version follows at once.

Theorem 1 (General Lovász Local Lemma). Let A = {A1, . . . , Am} be a finite
collection of events over an arbitrary probability space. Let G = (V, E) be their
dependency graph. If there exists an assignment of reals x : A → [0, 1) such that

For all i ∈ {1, . . . ,m} : P(Ai) 6 x(Ai)
∏

Aj∈N(Ai)

(1− x(Aj)),

then

P

(
m⋂

i=1

Ac
i

)
>

m∏
i=1

(1− x(Ai)) > 0,

and thus the bad events can be avoided altogether with non-zero probability.

We can think of x(Ai) as the actual probability of event Ai in the absence of
dependence, and the term

∏
Aj∈N(Ai)

(1− x(Aj)) as a “penalty” that event Ai pays
due to its dependence on other events. Thus, the lighter the dependence of Ai

on other events, the higher the probability of occurrence it can have and still be
avoided. We note that Spencer’s sufficient condition ep(d + 1) 6 1 is a spacial case

4

of the theorem above; if ep(d + 1) 6 1, where P(Ai) 6 p for every i, then

P(Ai) 6 p 6
1

(d + 1)e
6

1

d + 1

(
d

d + 1

)d

=
1

d + 1

d∏
i=1

(
d

d + 1

)
=

1

d + 1

d∏
i=1

(
1− 1

d + 1

)
6 x(Ai)

∏
Aj∈N(Ai)

(1− x(Aj))

when setting x(Ai) = 1/(d + 1) for every i. Thus setting x(Ai) = 1/(d + 1) in the
asymmetric condition ensures that ep(d+1) 6 1 holds. Note that the last inequality
follows because |N(Ai)| 6 d and d/(d + 1) < 1 for any d > 1. We have also used
the fact that

(
d

d+1

)d
> 1

e
. This follows because(

d + 1

d

)d

=

(
1 +

1

d

)d

6 e.

We extend the definitions thus presented to random variables. We will assume
that we are given a finite family of mutually independent random variables, P , over
a probability space (Ω,F , P). Every random variable P ∈ P , P : Ω → R assumes
real values in a finite set, say VP , |VP | < ∞. We will assume that our events Ai

are determined by a subset S ⊆ P. That is, Ai ⊆
⋃

S∈S{ω : S(ω) = vS} for some
evaluation of all the random variables in S. We say that every such evaluation of
the random variables violates event Ai, to emphasize that Ai is a bad event that we
want to avoid, and an evaluation that determines Ai is undesirable. In the language
of measure theory, we say that Ai is σ(S) measurable; that is, Ai ⊆ σ(S), where

σ(S) ≡ σ(S−1(vS) : S ∈ S and vS ∈ VS) ⊆ F

is the smallest σ-field that is generated by Ai. Such σ-field exists, and is in fact
the intersection of all σ-fields that contain Ai (and σ-fields are closed under inter-
sections). Thus it is necessary that there exists a minimal unique set S ⊆ P that
determines Ai.

We shall denote the set of variables that determine every event Ai as vbl(Ai)
for all i ∈ {1, . . . ,m}. This set is given to the algorithm for every event. We
extend our notion of the dependency graph to random variables as well. The set
of vertices is the set of events A, but an edge exists between two events Ai and Aj

iff vbl(Ai) ∩ vbl(Aj) 6= ∅. This notion of independence is equivalent to that in the
original definition, because if vbl(Ai) ∩ vbl(Aj) = ∅, then setting the value of any
random variable in vbl(Ai) does not change the evaluation of any random variable
in vbl(Aj). Then it follows that σ(vbl(Ai)) and σ(vbl(Aj)) are independent, and
thus for every B1 ∈ σ(vbl(Aj)) and every B2 ∈ σ(vbl(Aj)), we have P(B1 ∩ B2) =
P(B1)P(B2). But since Ai ⊆ σ(vbl(Ai)) and Aj ⊆ σ(vbl(Aj)), the above notion of
independence for σ-fields implies that P(Ai∩Aj) = P(Ai)P(Aj) whenever vbl(Ai)∩
vbl(Aj) = ∅.

Now given the set of events A and the set of random variables P , if the events
satisfy the conditions of the general LLL as stated in Theorem 1, then the following
simple randomized algorithm efficiently finds an evaluation of the random variables
in P such that none of the events is violated, that is, P (

⋂m
i=1 Ac

i) > 0. Initially a
value for every random variable P ∈ P is sampled, each according to its distribution.
Then if there are still violated events, then a violated event is chosen arbitrarily,

5

and a value is sampled for every variable that determines the event. The last pro-
cess continues until there are no more violated events. We report the algorithm in
Algorithm 1.

Algorithm 1: LLLConstruct(P ,A)

1 for every P ∈ P do
2 Sample vP from VP and set P ← vP

3 end for
4 while there are violated events do
5 Pick a violated event A
6 for every P ∈ vbl(A) do
7 Sample vP from VP and set P ← vP

8 end for
9 end while

10 return the final assignments (vP)P∈P

The algorithm therefore finds an assignment of reals x : A → R such that
P (
⋂m

i=1 Ac
i) >

∏m
i=1(1 − x(Ai)) > 0 and, moreover, the algorithm terminates (if,

again, the set of input events meet the conditions of the LLL). The major claim is

Claim 1. The expected number of times an event, say Ai ∈ A, might be resampled
(and thus violated) by the Moser-Tardos algorithm is at most x(Ai)

1−x(Ai)
.

When the algorithm terminates with a final assignment P = vP for every P ∈ P ,
we can find the set {

⋂m
i=1 Ac

i} by computing the set {ω : P (ω) = vP}, and thus
recover x(Ai) for every i ∈ {1, . . . ,m}.

Next we analyze the algorithm and prove that it terminates as claimed above.

2.2 Analysis of the Moser-Tardos Algorithm
The analysis is based on the following idea: for every violated event that the algo-
rithm resamples, or “fixes”, we build a tree rooted at the thus resampled event. At
every resampling step, this tree serves as a witness, or justification, for why the algo-
rithm needed to resample that event. Moreover, at every sampling step, we will see
that the witness tree constructed includes all the nodes that have been resampled so
far, in reverse depth order. Thus the length of the tree at every resampling step will
be upper bounded by the number of events violated and resampled so far. Our task
is to bound the expected length of the tree, which implies bounding the expected
number of resampling steps that the algorithm performs. Towards the latter goal,
we will focus our efforts on bounding the probability that a witness tree occurs.

At every step the algorithm resamples a violated event, we keep a record of
the events that the algorithm resampled so far. We call this list of events the
log of execution. Formally, it is a function C : N → A that maps every step of the
algorithm to the event in A that the algorithm has resampled at that particular step
(note that C is a partial function; it is not defined on all N because the algorithm
does terminate !)

At every resampling step t, the witness tree mentioned above is formally a finite
tree wtree(t) rooted at C(t), whose vertices are subsets of A, that is, V (wtree(t)) ⊆

6

A. At resampling step t, wtree(t) is constructed inductively as follows. At t = 1,
wtree(1) consists of C(1) as the sole vertex. At t > 2, given the log C until time t,
create the root C(t). Then consider the log C in reverse order, i.e., from i = t − 1
back to i = 1. We will say that C(i) overlaps with a node Aj ∈ V (wtree(t)) if
either C(i) = Aj, or there is an edge in the dependency graph G of A between C(i)
and Aj (that is, vbl(C(i)) ∩ vbl(Aj) 6= ∅). Put equivalently, C(i) ∈ N+(Aj). For
i = t − 1, . . . , 1, denote as wtreei(t) the partial tree created after examining C(i).
Thus wtreet(t) consists of C(t) solely, and wtree(t) = wtree1(t) (so constructing
wtree(t) involves growing a tree rooted at C(t) by examining C(i), C(i−1), . . . , C(1),
resulting in a possibly bigger partial tree at each step i, depending on whether or
not C(i) is attached to wtreei+1(t)). If C(i) overlaps with any nodes in the partial
tree wtreei+1(t), then among all the nodes in wtreei+1(t) with which C(i) overlaps,
attach C(i) to the node in wtreei+1(t) that is furthest from the root C(t) (i.e., has
the greatest depth; this is crucial) to get wtreei(t). If C(i) does not overlap with
any nodes in the partial tree wtreei+1(t), then simply skip C(i).

The witness tree wtree(t) has the following interesting properties.

Proposition 1. Given log C at time t, the witness tree wtree(t) has the following
properties

(i) If r < s, Ar is added to wtree(t) at time r and As added to wtree(t) at time
s, and Ar and As overlap, then the depth of Ar in wtree(t) is greater than the
depth of As,

(ii) All the vertices at the same level in wtree(t) are independent, and

(iii) All trees up to time t are different; wtree(1) 6= wtree(2) 6= · · · 6= wtree(t) .

Proof. (i) follows from the construction of the wtree(t): Ar is added to wtree(t)
after As, and is added to the vertex in wtreer+1(t) that is furthest from C(t). So if
Ar and As overlap, then it is attached to As as a child or to a deeper node in the
tree with which it overlaps.
(ii) follows directly from (i).
For (iii), assume that wtree(r) = wtree(s) for times r < s. Then wtree(r) and
wtree(s) have the same root, that is, C(r) = C(s) = A for some A ∈ A. Consider
the construction of wtree(s). For every i = s − 1, . . . , 1, if C(i) = C(s), then C(i)
always appears as a node in wtree(s). Thus the number of times C(s) appears as
a node in wtree(s) is exactly the number of occurrences of C(s) in the log C up to
time s. Call this number nA(s). Thus all the nodes in the log C for i = r, . . . , 1 with
C(i) = C(r) will appear in wtree(r), and of course they all appear in wtree(s), so
those nodes are a subset of V (wtree(s)). In fact, they are a proper subset, because
nA(s) is at least nA(r)+1, because A appeared at least once after time r, specifically
at time s, and thus it is not a node in wtree(r). Therefore wtree(r) and wtree(s)
contain different sets of vertices and thus wtree(r) 6= wtree(s).

Let wtree be a witness tree. For a given log C, we say that witness tree wtree
occurs in the log C if there exists t ∈ N such that wtree = wtree(t). With the
properties above of the witness tree in hand, we are in a position to prove the
following

Theorem 2. For a log C, the probability that a witness tree wtree occurs in C is∏
Ai∈V (wtree) P(Ai).

7

Proof. The proof proceeds by a coupling argument. Fix the random source that
the algorithm uses when sampling observations of each random variable P ∈ P .
Assume that every P ∈ P offers an infinite sequence of independent observations
(samples) from the elements in VP , arranged in some sequence vP (0), vP (1), . . . ,
where vP (k) ∈ VP for every k ∈ Z+ (recall that VP is finite)1. Whenever the
algorithm needs a new sample from a random variable, say P , either in the initial
assignment or when an event is violated, it chooses the next unused sample in the
sequence vP (0), vP (1), Now define the following procedure, called wtree-check:
starting from the bottom of the tree (i.e., reverse depth order), visit every node
Ai ∈ V (wtree) in this order. For every Ai ∈ V (wtree) in this (deterministic)
walk, sample an evaluation of the random variables in vbl(Ai), independently of all
previous evaluations, and according to Ai’s distribution. Check if this evaluation
violates (produces) Ai. Stop the wtree-check the first time a failure occurs, that
is, at the first event that is not violated by the sampling performed by wtree-
check. If all nodes are violated when we finish the wtree-check (which happens
when we sample the root), then we say that the wtree-check passes. Assume that
the wtree-check uses the fixed, infinite random source defined above when it chooses
a sample for any random variable P . Since the wtree-check samples every event
independently of all previous evaluations, it follows that the probability that the
wtree-check passes is exactly

∏
Ai∈V (wtree) P(Ai). We will show that wtree occurs

in C iff the wtree-check passes when both the algorithm and the wtree-check use
the same fixed random source.

Consider what happens when the algorithm resamples an event in A, say Ai.
Consider all the events that overlap with Ai that have been resampled (violated)
before Ai. Denote this set of events as E . All such events are in the tree, and
are at depth that is strictly greater than that of Ai in wtree (by Proposition 1).
Of course, Ai shares at least one variable with every event in E ; suppose that Ai

shares a variable, say P , with all those events. Then, when the algorithm considers
event Ai, the value of P is precisely vP (|E|), and the algorithm has sampled |E|+ 1
values for P (one for the initial assignment plus |E| values, a value per event in E).
Now consider the wtree-check: when, during its upward walk, it examines event
Ai, the wtree-check has already sampled the set E , because the wtree-check moves
bottom-up. Moreover, when the wtree-check has reached Ai, then the check has
passed for every E ∈ E , meaning that all the events in E have been violated. Most
importantly, the value of P when the wtree-check considers event Ai is exactly
vP (|E|) and, since both the algorithm and the wtree-check have the same values for
P , then the wtree-check will find that Ai is violated. Thus on the same random
sequence, the wtree-check passes if, and only if, wtree exists in C, so the probability
that the wtree exists in C is exactly the probability that the wtree-check passes.
This concludes the proof.

Proposition (1) part iii tells us even more; it implies that the number of witness
trees rooted at a certain node, say Ai, is exactly the number of times that Ai appears
in the log (because trees are distinct even if they have the same root), which in turn is
the number of times that Ai has been resampled. Now that we know the probability
of occurrence of each tree, the expected number of trees rooted at Ai (and thus the

1From an implementation perspective, fixing the random sequence for random variables amounts
to starting the random number generators with the same seed .

8

number of times event Ai has been resampled) can be easily computed by summing
the probabilities above. Let TAi

be the set of all distinct witness trees rooted at Ai.
Let RAi

be a random variable that indicates the number of times that Ai has been
resampled throughout the course of execution of the algorithm. Then RAi

counts
the number of witness trees rooted at Ai in C;

RAi
=

∑
wtree∈TAi

1{wtree occurs in C}.

Thus

E(RAi
) =

∑
wtree∈TAi

P(wtree occurs in C)

=
∑

wtree∈TAi

∏
Aj∈V (wtree)

P(Aj)

6
∑

wtree∈TAi

∏
Aj∈V (wtree)

x(Aj)
∏

Ak∈N(Aj)

(1− x(Ak)), (4)

where the last inequality follows from Theorem 1. To prove Claim 1 above, that
E(RAi

) 6 x(Ai)/(1−x(Ai)), we need to write the RHS of Eqn. (4) in terms of x(Ai)
only. To do so, we find an upper bound on

∏
Aj∈V (wtree) x(Aj)

∏
Ak∈N(Aj)

(1−x(Ak))

in terms of x(Ai), by relating witness tree creation to a Branching process2

2.2.1 Branching Processes

In brief, a Branching process is a Markov chain, where an individual gives birth
to immediate children, which we call the family of that individual. The process
starts at a root parent that gives birth to a random number of children, each is born
randomly according to its own distribution (given its parent), and independently
of other siblings. Those children form the first generation. Then, independently of
each other, every child gives birth to a (random) number of individuals, and so on.
Therefore, a tree is formed by this process, where the individuals at the nth level
of the tree are called the nth generation. The crucial point is that, given a parent,
its family is independent (or grows independently) of all other families in the tree
(here is where the Markov property kicks in.)

Next we give a brief overview of the most basic of branching processes : the
Single type Galton-Watson process. Let ζn

i , i > 1, n > 1, be i.i.d, non-negative
integer-valued random variables. Every ζn

i is the number of immediate children that
the ith individual in the (n − 1)st generation gives birth to in the nth generation.
Define the sequence of random variables Zn, n > 1, where Zn is the number of
individuals in the nth generation, and Z0 = 1. Then naturally,

Zn+1 =

{
ζn+1
1 + . . . + ζn+1

Zn
if Zn > 0,

0 if Zn = 0.

The offspring distribution of the ith individual in the (n − 1)st generation and
gives birth to children in the nth generation is P(ζn

i = k) for any k ∈ Z+. The
2Some authors use the term Galton-Watson process to refer to Branching processes.

9

extinction probability is the probability that the branching process dies out, that
is, limn→∞ P(Zn = 0). Thus the process dies out if limn→∞ P(Zn = 0) = 1. Let
Fn = σ(ζ i

m : m ∈ {1, . . . , n}, i > 1). If µ = E(ζn
i) (recall the ζn

i s are i.i.d and thus
have the same mean), then it is known that Zn/µ

n is an (Fn)-martingale. Moreover,
Zn/µ

n is L1-Bounded, that is, supn E(|Zn/µ
n|) < ∞. Therefore, Doob’s Forward

Martingale Convergence Theorem applies, and we have that Zn/µ
n converges to

some limit almost surely. Specifically, if µ < 1, then it is always the case that
Zn/µ

n → 0 almost surely, and that limn→∞ P(Zn > 0) = 0, so the process always dies
in this case (the process is called subcritical when µ < 1). In words, if an individual
gives birth to less than one child on average, then the process will eventually die
out. We invite the reader to examine Durrett [2], chap. 5, for neat proofs of the
results above.

Now given the background above, we get back to the task of bounding Eqn. (4)
in terms of x(Ai) only. Let wtree ∈ TAi

. For each event A ∈ A, think of x(A) as
a conditional probability: it is the probability that A exists as a vertex in wtree as
a child of any vertex in N+(A) in the dependency graph, that is, given that a node
in N+(A) exists in wtree, and that this node is the immediate parent of A. Now
consider the following Galton-Watson process for generating a tree rooted at Ai, call
wtreeGW. First, designated Ai as a root. Then for each Aj ∈ N+(Ai), independently
either attach Aj to Ai with probability x(Aj), or skip Aj with probability 1−x(Aj).
Repeat the process above for every node you add in wtreeGW. This process will
either die out eventually, or will continue forever (extinction depends on means as
we outlined above, which in turn depend on node probabilities). Our question will
be: what is the probability that wtreeGW = wtree?

Comparing with our overview above, we see that the random variables ζn
i in

our witness tree generation branching process are not identically distributed; this is
because reproduction depends on the parent’s type. Different events have different
neighbors in the dependency graph, and so events are of different types, and we have
a multitype Galton-Watson process. Thus to describe the offspring distribution of a
node, say B, which occurs as the ith individual in the nth generation, it is not enough
to specify P(ζn+1

i = k) for every k. Rather, if N+(B) = {B1, . . . , Bd} is the inclusive
neighborhood of B in the dependency graph G of A, then the offspring distribution
is the joint distribution P(ζn+1

i,B1
= k1, . . . , ζ

n+1
i,Bd

= kd) for all (k1, . . . , kd) ∈ Zd
+.

This expression is just another way to encode families; we will interpret it as the
probability that this family occurs. We point out that the results presented above
for single type Galton-Watson processes carry over to multitype Galton-Watson
processes. We refer the reader to Athreya and Ney [1] for a treatment of multitype
Galton-Watson processes.

In our tree generation process, children of a certain node are chosen indepen-
dently of each other, one at a time, so P(ζn+1

i,B1
= k1, . . . , ζ

n+1
i,Bd

= kd) =
∏d

j=1 P(ζn+1
i,Bj

=

kj), where P(ζn+1
i,Bj

= kj) = P(ζn+1
i,Bj

= 1)kj = x(Bj)
kj if kj > 1, and P(ζn+1

i,Bj
= 0) =

1−x(Bj). Now computing the probability of the event {wtreeGW = wtree} becomes
a simple task. We illustrate the process by means of an example.

Example. Consider the witness tree in Figure 3. Assume that this tree occurs
in the log C when the Moser-Tardos algorithm resamples some event A ∈ A. Call
this tree wtree, where wtree ∈ TA. The probability that our described Galton-
Watson process produces the same tree when starting at node A is the probability

10

A

D

C B

E

(a) Dependency Graph

A

E

A C

(b) Witness tree rooted
at A Generated by some

log C

Figure 3: Dependency Graph and Witness Tree for Galton-Watson Process Tree
Generation Example

that every family in wtree occurs, which is given by

P(wtreeGW = wtree) = P((ζ1
1,C = 1, ζ1

1,A = 1, ζ1
1,B = 0, ζ1

1,D = 0)∩
(ζ2

1,D = 1, ζ2
1,E = 0, ζ2

1,C = 0, ζ2
1,A = 0)∩

(ζ2
2,A = 0, ζ2

2,B = 0, ζ2
2,C = 0, ζ2

2,D = 0)∩
(ζ3

1,C = 0, ζ3
1,E = 0)).

But families grow independently given their parents (the Markovian property). So

P(wtreeGW = wtree) =P(ζ1
1,C = 1, ζ1

1,A = 1, ζ1
1,B = 0, ζ1

1,D = 0)×
P(ζ2

1,D = 1, ζ2
1,E = 0, ζ2

1,C = 0, ζ2
1,A = 0)×

P(ζ2
2,A = 0, ζ2

2,B = 0, ζ2
2,C = 0, ζ2

2,D = 0)×
P(ζ3

1,C = 0, ζ3
1,E = 0).

And by our Galton-Watson process,

P(wtreeGW = wtree) =x(C)x(A)(1− x(B))(1− x(D))×
x(E)(1− x(D))(1− x(C))(1− x(A))×
(1− x(A))(1− x(B))(1− x(C))(1− x(D))×
(1− x(C))(1− x(E)).

Rearranging the terms in the last equation we get

P(wtreeGW = wtree) =x(A)[(1− x(B))(1− x(D))]×
x(C)[(1− x(A))(1− x(C))(1− x(D))]×
1[(1− x(A))(1− x(B))(1− x(C))(1− x(D))]× (5)
x(E)[(1− x(C))(1− x(E))].

Note that the term (5) in the equation above corresponds to the events that do not
exist as children of event A in the second level of the tree (N+(A) = {A, B, C,D}).
This term can be written as 1

x(A)
x(A)[(1 − x(A))(1 − x(B))(1 − x(C))(1 − x(D))].

11

Therefore, if for every A ∈ A we let WA denote the subset of vertices in N+(A)
that do not occur as children of node A in wtreeGW, then the equation above can
be written as

P(wtreeGW = wtree) =
1

x(A)

∏
Aj∈V (wtreeGW)

x(Aj)
∏

Ak∈WAj

(1− x(Ak)).

In fact, the result in the example above is a general one and is not a mere coincidence:
for any set of events A = {A1, . . . , Am} satisfying the conditions of the LLL as in
Theorem 1, for every Ai ∈ A and every wtree ∈ TAi

, the probability that the tree
wtreeGW produced by our described Galton-Watson process when started at Ai is
identical to wtree is

P(wtreeGW = wtree) =
1

x(Ai)

∏
Aj∈V (wtree)

x(Aj)
∏

Ak∈WAj

(1− x(Ak)).

Now that we have this result in hand, we are in business to prove the following

Lemma 1. Let wtree be a fixed witness tree rooted at Ai. The probability that the
witness tree wtreeGW generated by the described Galton-Watson, when started at
Ai, is identical to to wtree is

P(wtreeGW = wtree) =
1− x(Ai)

x(Ai)

∏
Aj∈V (wtree)

x(Aj)
∏

Ak∈N(Aj)

(1− x(Ak)).

Proof. From above, we have

P(wtreeGW = wtree) =
1

x(Ai)

∏
Aj∈V (wtree)

x(Aj)
∏

Ak∈WAj

(1− x(Ak))

=
1

x(Ai)

∏
Aj∈V (wtree)

x(Aj)

∏
Ak∈N+(Aj)

(1− x(Ak))∏
Ak∈N+(Aj)\WAj

(1− x(Ak))

=
1

x(Ai)

∏
Aj∈V (wtree)

1∏
Ak∈N+(Aj)\WAj

(1− x(Ak))
x(Aj)

∏
Ak∈N+(Aj)

(1− x(Ak)).

Looking at the denominator of the last equation, we see that for every node Aj ∈
V (wtree), we are multiplying the probabilities that its immediate children in wtree
do not occur in wtreeGW, so the denominator is accounting for every node in wtree
except for the root Ai. Thus∏

Aj∈V (wtree)

1∏
Ak∈N+(Aj)\WAj

(1− x(Ak))
=

∏
Aj∈V (wtree)

1− x(Ai)

1− x(Aj)
.

So we have

P(wtreeGW = wtree) =
1− x(Ai)

x(Ai)

∏
Aj∈V (wtree)

x(Aj)

1− x(Aj)

∏
Ak∈N+(Aj)

(1− x(Ak))

=
1− x(Ai)

x(Ai)

∏
Aj∈V (wtree)

x(Aj)

∏
Ak∈N+(Aj)

(1− x(Ak))

(1− x(Aj))

=
1− x(Ai)

x(Ai)

∏
Aj∈V (wtree)

x(Aj)
∏

Ak∈N(Aj)

(1− x(Ak)). (6)

12

Now the proof of Claim 1 is a corollary of what we have proved so far. Recall
Eqn. (4). Then

E(RAi
) 6

∑
wtree∈TAi

∏
Aj∈V (wtree)

x(Aj)
∏

Ak∈N(Aj)

(1− x(Ak))

6
∑

wtree∈TAi

x(Ai)

1− x(Ai)
P(wtreeGW = wtree) [by Eqn. (6)]

=
x(Ai)

1− x(Ai)

∑
wtree∈TAi

P(wtreeGW = wtree)

Now the situation is the following: the tree wtreeGW generated by the Galton-
Watson process might grow infinite. Even if the Galton-Watson halts, then it might
not generate any tree in TAi

when started at Ai. Moreover, a single run of our Galton-
Watson process produces one tree wtreeGW, which can therefore be identical to at
most one tree in TAi

. Thus
∑

wtree∈TAi
P(wtreeGW = wtree) 6 1 and we have

E(RAi
) 6

x(Ai)

1− x(Ai)

∑
wtree∈TAi

P(wtreeGW = wtree) 6
x(Ai)

1− x(Ai)
.

In conclusion, the total number of resampling (event fixing) steps that the Moser-
Tardos algorithm performs when the set of bad events is A = {A1, . . . , Am} is, on
average,

∑m
i=1

x(Ai)
1−x(Ai)

.

2.3 The Moser-Tardos LLL Algorithm Admits Parallelism
Recall that in Algorithm 1, we pick a violated event to fix one at a time. We can do
better, however. Note that the events that do not overlap in the dependency graph
form an independent set, in the sense that altering the assignment of any variable
in the set of variables of any event in this independent set does not change the
assignment of variables of other events. This is simply because independent events
do not have any variables in common. Therefore, instead of picking one violated
event at a time, the algorithm (greedily) picks a maximal independent set of violated
events in the dependency graph G at every resampling step. For the maximal
independent set of violated events that the algorithm picks, call IS ⊆ A, it samples
an assignment for every variable P ∈

⋃
A∈IS vbl(A) independently at random. Note

that there are exactly
∑

A∈IS |vbl(A)| variables to set at every resampling step, since
the sets vbl(A) are disjoint in IS.

We do not delve into the analysis of the parallel version of the algorithm, but
we point out that in order to achieve a logarithmic expected number of resampling
steps, the condition that

For all i ∈ {1, . . . ,m} : P(Ai) 6 x(Ai)
∏

Aj∈N(Ai)

(1− x(Aj)),

as stated in Theorem 1 had to be weakened to

For all i ∈ {1, . . . ,m} : P(Ai) 6 (1− ε)x(Ai)
∏

Aj∈N(Ai)

(1− x(Aj)),

13

for some ε > 0. If the set of input events satisfy this condition, then the number of
resampling steps is, on average, O

(
1
ε
log
(∑m

i=1
x(Ai)

1−x(Ai)

))
.

3 The LLL and Packet Routing and Job Schedul-
ing

In the sequel, we present a non-trivial application of the LLL to Packet Routing
and thus Job Scheduling, the latter being an active research area in Operations
Research. We present the results communicated in the beautiful article of Leighton,
Maggs, and Rao [4].

Simply put, given a set of elements, called packets, and a network, the packet
routing problem is concerned with moving all the input packets from their initial
locations (origins) to their final destinations through the given network. The network
we refer to is defined in the traditional network-theoretic sense: It is a digraph
D = (N, A), where N is a set of nodes, and A is a set of arcs (directed edges)3,
m := |A|. Thus packets start their journey at specified origin nodes, and they are
required to traverse arcs, at most one arc at every time step, until they reach their
final destinations. We assume that there is a global clock to which all the nodes
are synchronized; therefore, a packet traverses an edge only at clock ticks (time is
discrete in our setting) and in its entirety (packets are atomic objects). We insist
that at most one packet can traverse an edge at every clock tick (this requirement
will be an essential property of the desired schedule of the packets).

When a packet traverses an edge, it is placed in a queue at the end of that edge.
Such queues will have specific finite sizes, and thus a packet is allowed to traverse an
edge only if the edge queue is not full. Specifically, a packet that is ready to traverse
an edge at the next time step is at the head of the queue of an edge adjacent to the
one it wants to traverse, and a packet queued must wait for all the packets ahead
of it in the queue to be transferred before it becomes ready to traverse an adjacent
edge (so queues can be though of as belonging to the nodes themselves.)

We define a schedule of the packets as the series of decisions of which packet to
move across every edge at every time step. In particular, a schedule is a mapping
between time steps and the packets that traverse every edge at every time step.
Formally, denote the set of input packets (or jobs) as J , where n := |J |. For every
i ∈ {1, . . . ,m}, packet Ji is identified by a pair (si, ti), where si, ti ∈ A, si is the
source arc (origin), and ti is the destination arc (terminal). We fix a labeling of the
edges A of the underlying network D, say (a1, . . . , am). Define a schedule snapshot
vector S = (J1, . . . , Jm), where the kth entry Jk is the packet that traverses edge
ak, if any, so either Jk ∈ J , or Jk = ∅. Denote the set of all possible snapshots that
can occur throughout the whole duration of any schedule of the packets as S (there
are at most (n + 1)m such vectors). Then a schedule is a partial injective function
σ : N→ S such that σ(t) = S for some S ∈ S.

Define the makespan of a certain schedule as the epoch, measured at t = 0,
at which the last packet is delivered to its final destination. In other words, the
makespan of a schedule is its length.

We distinguish between the path selection problem and the routing problem. In
3In what follows we shall use the terms “arc” and “edge” interchangeably.

14

the path selection problem, we are given the input packets with their origins and final
destinations, along with the network, and the goal is to select paths for the packets so
that packets are delivered to their final destinations, with some objective to optimize.
In the routing problem, every packet has a specific path that it should traverse
explicitly until it reaches its final destination, and the objective is to determine at
every time step which packet traverses which edge. In this article we are concerned
with the routing problem, and we aim at finding a schedule σ with as minimum a
makespan as possible, while minimizing the maximum queue sizes needed to route
the packets to their destinations. A legitimate schedule in our setting is one where at
most one packet traverses an edge at a time. Therefore, if a schedule allows multiple
packets, say x packets, to pass through an edge at a single clock tick, then this step
can simulated by a legitimate schedule in x steps.

We will assume that every packet has a path P associated with it, and we will
denote the set of all such input paths as P , with |P| = |J | = n. A lower bound on
the makespan of any legitimate schedule of the input packets is the length of the
longest path in P , since at least one packet in J must traverse that path. We call
this quantity the dilation, d, of P , where d = maxP∈P |A(P)|. A path P is subgraph
of D, so we used the notation A(P) to denote the set of arcs comprising P , where
A(P) ⊆ A. Moreover, the maximum number of packets that can simultaneously
use a single edge any time during the schedule is the congestion, c, of P . We define
the latter as c = maxa∈A max |{P ∈ P : a ∈ A(P)}|. So the congestion is as well
a lower bound on the makespan of any legitimate schedule of the packets; at least
one packet will wait in a queue for c time steps before it traverses that edge (and
a packet must traverse at least one edge). Thus, a lower bound on the makespan
of any schedule of the packets is (c + d). We note that according to our definitions,
not all vectors in the set S we defined it above are valid.

A quite natural, though not legitimate, schedule is the greedy one, call σ0: move
all packets waiting at an edge queue across their desired edges. The non-legitimate
algorithm we described will have a makespan of at most d, since a packet never
waits for other packets on an edge. To turn this schedule to a legitimate one, we
notice that if the congestion of P is c, then at most c packets will traverse any edge
at any time instant by σ0, so at most c packets will accumulate at a certain edge
queue if we allow only one packet to traverse an edge at a time, thus a queue of size c
suffices. We just simulate every step of the non-legitimate schedule: since queues are
of size c, then a packet need to wait in a queue for at most c− 1 time steps before it
becomes ready to traverse an edge in a legitimate schedule (and blocking due to full
queues can never happen). Thus, we can simulate every step of the non-legitimate
schedule in at most c steps, yielding a greedy legitimate schedule with a makespan
of O(cd).

With randomness, the authors achieved a much better upper bound on the
makespan of any legitimate schedule. Remarkably, the upper bound of the makespan
of the resulting schedule matches the lower bound, O(c+d), with queue sizes of O(1)!
In this article, however, we will content ourselves with a weaker result, that a sched-
ule of makespan (c + d)2O(log∗(c+d)) and maximum queue size 2O(log∗(c+d)) log(c + d)
exists, where log∗(x) is the iterated logarithm function of x. We explain this func-
tion in Appendix B. This result is not any less substantial than the stronger result,
and the proof techniques used in the stronger result are extensions to the ones used
in the weaker result. Interestingly, the bounds of both results are independent of

15

the number of input packets, n. The proofs of the main results do not explicitly
construct the schedule, but rather employ the LLL to show the existence of such
schedule. After we show that the schedule claimed above exists, we will outline how
the Moser-Tardos algorithm can be applied to actually construct the schedule.

3.1 A (c + d)2O(log∗(c+d)) Routing Algorithm Exists
The algorithm is based on three main ideas. First, a random delay is assigned to
every input packet, initially. Second, a non-legitimate, or unconstrained, greedy
schedule, σ0, is constructed, where every packet moves at every step, without ever
stopping, until it reaches it final destination. Then successive refinements are applied
to the greedy schedule, until at most a single packet is allowed to traverse an edge.
Finally, the bad events are identified, where, roughly speaking, a bad event is the
event that more than a certain number packets traverse a certain edge at any time
(and so we have a bad event per edge). If the probability that all bad events do not
take place simultaneously is strictly positive, then with positive probability, a set of
packet delays exist such that it is highly unlikely that edges are highly congested,
which yields an upper bound on both the schedule’s makespan and edge queue sizes.

Now we use the ideas above to show the existence of a schedule with the claimed
makespan and maximum queue size. We introduce the following notation. Define a
T -frame to be a a sequence of T time steps. Let C denote the frame congestion, which
is the maximum number of packets that can traverse any edge within time frame
T . Note the frame congestion is time-related, whereas the input paths congestion,
c, has no notion of time. Finally, Denote as R the relative congestion in a T -frame,
which we define as R = C/T .

We will make the following assumption: every path P ∈ P is simple, in that no
packet can use an edge more than once throughout its journey from the origin to
the final destination. Next we present the fundamental Lemma that is going to be
used in the proof of the main result.

Lemma 2. For any set of packets whose paths are simple, and having congestion c
and dilation d, there exists a schedule of makespan O(c + d) in which packets never
wait in edge queues, and in which the relative congestion R in a T -frame of length
log d or greater is never greater than unity.

Proof. First assign an initial delay to every packet. The delays are chosen uniformly
and independently at random from the set {1, . . . , αd}; α is a constant to be deter-
mined. Recall our greedy schedule σ0, where a packet never waits in a queue until
it reaches its final destination. We refine σ0 to a schedule σ1, where a packet waits
only in its initial queue for its randomly chosen delay, say x, then it moves, without
ever waiting in any intermediate queue, until it reaches its final destination. Since
at least one packet has a path of d edges, and packets cannot wait for more than
αd time steps in their initial queues, it follows that the makespan of σ1 is at most
(d + αd). We would like to show that, if the delays are chosen as above, then there
is a non-zero probability that the relative congestion in any T -frame of length at
least log d is at most one. An application of the LLL will allow us to establish that
such delays exist as follows. For every arc a ∈ A, define a bad event as: “more than
T packets traverse arc a within some time frame of length T , for all frame lengths
T > log d.” Thus showing that all those |A| = m bad events do not take place simul-
taneously with non-zero probability implies that there exists a set of initial delays,

16

when chosen uniformly and independently at random, such that relative congestion
in any T -frame of length at least log d is at most one.

We note that two bad events are dependent iff a packet passes through both
the edges to which the bad events are associated. Thus, dependencies arise solely
by delay assignments. At most c packets pass through any arc, and each of these
packets can pass through at most d other arcs, so there cannot be more than cd
dependent events. If we assume, wlog, that c = d, then the dependency parameter,
b, is at most b = cd = d2. Thus the maximum degree of any node in the dependency
graph corresponding to our bad events is at most b = d2.

Having identified dependencies, we proceed to compute an upper bound on the
probability, p, of bad events. We will derive a uniform upper bound on the bad event
probabilities so that we can apply the symmetric LLL. We observe the following.

(i) For edge a, define as success the event that a single packet traverses a during
time frame T . A packet has one of αd delays assigned to it, independently of
other packets, each with probability 1/αd. Since every packet’s path is simple,
a packet will never traverse an edge again once it passes through it. Thus, T
delays can send the packet through a, only once, and so the probability that a
packet passes through edge a during T is exactly T/αd. We know that for any
edge, at most c = d packets can pass through that edge, and so, by our simple
path assumption, there are at most

(
d
k

)
combinations of k distinct packets that

can pass through any edge at any time instant. Therefore, during a frame
of length T , the probability that k packets pass through edge a is at most(

d
k

)
(T/αd)k(1 − T/αd)d−k. If we let Xa be the number of packets that pass

through an arc a during a T -frame, then Xa is a Binomial random variable,
where Xa ∼ BIN(d, T/αd), and P(Xa = k) =

(
d
k

)
(T/αd)k(1− T/αd)d−k;

(ii) If T > d, then R = C/T 6 C/d 6 1, because C 6 c = d. So the bad events
cannot occur for T > d, and we can therefore safely ignore frames of length
greater than or equal to d. Thus, the frame sizes over which we would like to
bound our probabilities becomes log d to d, and

(iii) The makespan of schedule σ1 is at most (1 + α)d, and thus for every frame
duration T , time frames of duration T in σ1 can start at any of t = 0 to
t = (1 + α)d, so there are at most (1 + α)d frames corresponding to every T .

From the observations above, we conclude that the probability that the bad event
associated with edge a occurs is the probability, taken over all frame sizes T = log d
to T = d (observation (ii)), that the number of packets passing through edge a is
greater than T during all time frames corresponding to every possible frame length
T (observation (iii)), which we write as

pa 6
d∑

T=log d

(1 + α)dP(Xa > T).

But from observation (ii), we have

P(Xa > T) =
d∑

j=T+1

(
d

j

)
(T/αd)j(1− T/αd)d−j.

17

From the last expression, we note that P(Xa > T) does not depend on the particular
edge a, so we get a uniform bound on the probability of bad events p = pa for all
a ∈ A, which we write

p 6
d∑

T=log d

(1 + α)d
d∑

j=T+1

(
d

j

)
(T/αd)j(1− T/αd)d−j.

For sufficiently large, but fixed α, Shearer’s LLL sufficient condition epb 6 1 can be
satisfied, which implies that all bad events can be avoided altogether with non-zero
probability. Thus there exists a set of delays such that the relative congestion of any
edge during any time frame of length log d or greater is less than one. Our lemma
follows because the makespan of the schedule is (1 + α)d ∈ O(d) = O(c + d) by our
assumption that c = d.

Note that, so far, we have not derived a bound on the maximum congestion for
the whole duration of the schedule, we restricted our attention to log d-sized frames
and bounded the congestion during those frames, with high probability. Having
shown the lemma above, we are in a position to prove our desired result.

Theorem 3. For any set of packets whose paths are simple, have dilation d and
congestion c, there exists a legitimate schedule of makespan (c + d)2O(log∗(c+d)) and
maximum queue size 2O(log∗(c+d)) log(c + d).

Proof. In order to write the bounds in terms of d only, we assume c = d such that
the makespan reads d2O(log∗(d)). The idea is to recursively divide the schedule σ1 we
produced in Lemma 2 and solve every smaller scheduling problem independently of
others. Recall that the makespan of σ1 is (1 + α)d, and that no more than log d
packets can traverse any edge simultaneously in any frame of length log d. The last
property says that the congestion during a time frame of length log d is at most
log d, so we use it as follows: divide the makespan of σ1 into frames of length log d.
Therefore, we get (1 + α)d/ log d, log d time frames.

We treat every log d frame as a separate scheduling problem, where the dilation
is log d (a packet can traverse at most log d edges during log d time steps) and
congestion log d. Moreover, a packet has as origin the edge where it arrived at
the beginning of current log d frame, and its destination is its location at the end
of the frame. If a packet reaches its destination before the log d frame finishes,
then it is buffered in the queue at its destination until the next log d frame starts
(to be able to treat scheduling problems across frames separately). In the second
recursive step, there exists a (non-legitimate) schedule with makespan, say (1 +
β) log d, where the maximum number of packets that can traverse any edge at any
time is log log d during a time frame of length log d (Lemma 2). The third recursive
step would then divide the subproblems into (1 + β) log d/ log log d subproblems,
each of length log log d, etc. Keep dividing the time frames in this manner until
the number of packets in the subproblem becomes constant in d; this happens after
O(log∗ d) recursion steps. Thus, the leaves of recursion tree are at depth O(log∗ d)
in the recursion tree. At every recursion step, we notice that the makespan of the
resulting schedule increases by a constant factor, from which we get a total increase
of constant 2O(log∗ d) across all recursion levels. Thus, the makespan of the resulting
schedule is d2O(log∗ d). Therefore, the schedule at each recursive step can be turned

18

to a legitimate one by simulating it a constant number of times so that each packet
uses exactly at most edge.

To make things a bit more formal, denote as M(d) the makespan of the schedule
when the input is of size d. Then we get the following recurrence relation for our
the makespan of our algorithm

M(d) 6
(1 + α)d

log d
M(log d),

with M(0) = 0 and M(1) = 1. If we make the guess M(d) = d2O(log∗ d), then

d2O(log∗ d) 6
(1 + α)d

log d
log d2O(log∗ log d) = (1 + α)d2O(log∗ d)

holds, because both 2O(log∗ d) and 2O(log∗ log d) are constants (pedantically, log∗ log d =
log∗ d−1). Moreover, the increase of the congestion at each recursive step is constant
as well, and so we get a constant 2O(log∗ d) increase in the original log d congestion as
a result of the new schedule, yielding a log d2O(log∗ d) overall congestion of the final
schedule.

3.2 Applying the Moser-Tardos LLL Algorithm to Construct
the Schedule

With the Moser-Tardos algorithm for LLL in hand, we can construct the schedule
whose existence we have just shown in reasonable expected number of steps in
the probability, p, of our m bad events. The first step in applying the algorithm
is to create a set of random variables whose assignment encodes the solution of
the problem. A solution in our case is a set of packet delays, each chosen from
the set {1, . . . , αd}. Thus, we associate with each of our n input packets a delay
random variable, D, which assumes values in {1, . . . , αd}. Denote the set of all our
n random variables as D. Let the set of edge bad events be E = {E1, . . . , Em},
where we assume a fixed labeling (a1, . . . am) on the input network edges. Every bad
event Ei is determined by at most c = d random variables, which is given by the
congestion of the packet paths. Thus, for every i ∈ {1, . . . ,m}, vbl(Ei) is the set of
random variables in D associated with every packet whose given path contains the
edge ai. We have shown that two edges are dependent iff a packet passes through
both edges, so the dependency graph of E1, . . . , Em is well defined, and every vertex
in this graph cannot have more than d2 neighbors.

Now that the algorithmic setup is complete, we run the Moser-Tardos algorithm
(Algorithm 1) onD as the input random variables and E as the set of bad events. The
algorithm will terminate with an assignment (vD)D∈D of packet delays, where vD ∈
{1, . . . , αd}. Packet D will wait in its initial queue for vD time steps deterministically
before it starts traversing the network. Thus, constructing the schedule function σ(t)
is routine: equip every edge with a queue of size log(c+d)2O(log∗(c+d)), then simulate
every time step given the initial packet delays, for at most (c + d)2O(log∗(c+d)) time
steps. At every time step t, move the packets that are at the head of edge queues
through their next edges in their paths and create the snapshot vector (J1, . . . , Jm)
accordingly and associate it with t, and advance the location of all other packets
waiting in edge queues.

19

4 Concluding Remarks
We presented the Lovász Local Lemma in both its symmetric and general asym-
metric forms. We presented the Algorithmic LLL, due to Moser and Tardos, which
finds the points in the sample space over which a finite set of bad events are to be
avoided, given that the bad events are locally dependent upon each other, and their
probabilities satisfy the requirements of the general asymmetric LLL. We examined
the proof of correctness of the algorithmic LLL in full detail, and showed that the
algorithm does terminate in a reasonable expected number of steps with respect to
bad event probabilites. We then presented an application of LLL to packet routing
in networks, and showed that a schedule exists with length that is almost linear
in the size of the input, namely the magnitudes of the input network dilation and
congestion.

We take the opportunity to show the connection between packet routing as dis-
cussed above and job scheduling on parallel machines. The input packets J become
the set of jobs. The edges in the input network become the machines upon which
the jobs are to execute, and every machine has its own job queue. The path as-
sociated with every job then is the sequence of machines upon which the job is to
run until it finishes execution. The maximum number of jobs that need to use a
machine simultaneously at any instant is the congestion, c, and the maximum num-
ber of machines that need to be used by any job is the dilation, d. Atomicity of
packets translates to saying that job execution is nonpreemptive: Once a job starts
execution upon a machine, it should run to completion on that machine without
interruption. The machines are identical in our setting, in that a job’s execution
requirement is indifferent to the machine upon which it executes, and is constant
across all machines. With the objective of minimizing the makespan of the schedule,
the problem becomes a variation of the Job Shop Scheduling problem on m machines
with no recirculation and no preemption (See Pinedo [6], chap. 7). The no recircu-
lation requirement comes from the simple paths assumption imposed on the packet
routing problem. As a consequence of the packet routing results, a schedule of
makespan O(c+d) does exist for the above-mentioned job shop scheduling problem,
where at most a constant number of jobs wait in machine queues, and jobs wait for
a constant number of steps in the queues of intermediate machines, after they wait
for at most O(c + d) steps at their initial queues.

References
[1] K. B. Athreya and P. E. Ney. Branching Processes. Dover Publications, March

19 2004. ISBN 0486434745.

[2] R. Durrett. Probability Theory and Examples. Cambridge University Press,
Cambridge, August 2010. ISBN 9780521765398.

[3] P. Erdős and L. Lovász. Problems And Results On 3Chromatic Hypergraphs
and Some Related Questions. 1975.

[4] F. T. Leighton, B. M. Maggs, and S. B. Rao. Packet routing and job-shop
scheduling in o(congestion+dilation) steps. Combinatorica, 1994.

20

[5] R. A. Moser and G. Tardos. A constructive proof of the general lovász lo-
cal lemma. J. ACM, 57:11:1–11:15, February 2010. ISSN 0004-5411. doi:
http://doi.acm.org/10.1145/1667053.1667060. URL http://doi.acm.org/10.1145/
1667053.1667060.

[6] M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, 3 edition,
July 24, 2008.

[7] J. Shearer. On a problem of spencer. Combinatorica, 5:241–245, 1985. ISSN
0209-9683. URL http://dx.doi.org/10.1007/BF02579368. 10.1007/BF02579368.

[8] J. Spencer. Asymptotic lower bounds for ramsey functions. Discrete Mathemat-
ics, 20(0):69 – 76, 1977. ISSN 0012-365X. doi: 10.1016/0012-365X(77)90044-9.
URL http://www.sciencedirect.com/science/article/pii/0012365X77900449.

A Proofs of Some Propositions
Here we prove some propositions that we used in the article.

Proposition 2. If A and B are independent events, then their complements Ac and
Bc are independent.

Proof. If A and B are independent, then

P(A ∩B) = P(A)P(B). (7)

Write A as the union of two disjoint events: A = (A ∩B) ∪ (A ∩Bc). Then

P(A) = P(A ∩B) + P(A ∩Bc).

Substituting P(A ∩B) for P(A)− P(A ∩Bc) in Eqn. (7), we get

P(A)− P(A ∩Bc) = P(A)P(B),

so

P(A ∩Bc) = P(A)− P(A)P(B) = P(A)(1− P(B)) = P(A)P(Bc). (8)

Now write Bc = (A ∩Bc) ∪ (Ac ∩Bc). Thus

P(Bc) = P(A ∩Bc) + P(Ac ∩Bc).

Substituting P(A ∩Bc) for P(Bc)− P(Ac ∩Bc) in Eqn. (8), we get

P(Bc)− P(Ac ∩Bc) = P(A)P(Bc),

from which we get

P(Ac ∩Bc) = P(Bc)− P(A)P(Bc) = P(Bc)(1− P(A)) = P(Ac)P(Bc).

Next we show the result for n mutually independent events.

21

http://doi.acm.org/10.1145/1667053.1667060
http://doi.acm.org/10.1145/1667053.1667060
http://dx.doi.org/10.1007/BF02579368
http://www.sciencedirect.com/science/article/pii/0012365X77900449

Proposition 3. Let A1, . . . , An be n jointly (mutually) independent events over
some probability space. Then their complements Ac

1, . . . , A
c
n are mutually indepen-

dent.

Proof. We show that if A1, . . . , An are mutually independent, then Ac
1, A2, . . . , An

are mutually independent. Let Ai1 , . . . , Air be an r subset of A1, . . . , An. If Ac
1 is

not any of Ai1 , . . . , Air , then

P

(
r⋂

j=1

Aij

)
=

r∏
j=1

P(Aij).

If Ac
1 is one of Ai1 , . . . , Air , then wlog, let Ac

1 = Ai1 . Then

P

(
r⋂

j=1

Aij

)
= P

(
Ac

1 ∩
r⋂

j=2

Aij

)
= P

(
Ac

1 ∩
r⋂

j=2

Aij

)
P

(
(Ω \ A1) ∩

r⋂
j=2

Aij

)

= P

((
r⋂

j=2

Aij

)
\

(
A1 ∩

r⋂
j=2

Aij

))
=

r∏
j=2

P(Aij)− P(A1)
r∏

j=2

P(Aij)

= (1− P(A1))
r∏

j=2

P(Aij) = P(Ac
1)

r∏
j=2

P(Aij).

Thus if A1, . . . , An are mutually independent, then Ac
1, A2, . . . , An are mutually inde-

pendent. Repeating this argument on the last result, one shows that Ac
1, A2, . . . , An

are mutually independent, then Ac
1, A

c
2, A3, . . . , An are mutually independent. By

induction, the desired result will follows when one shows that if Ac
1, . . . , A

c
n−1, An

are mutually independent, then so are Ac
1, . . . , A

c
n.

B The Iterated Logarithm Function
The iterated logarithm function log∗ : R+ → Z+ counts the number of times log
(in our case, the binary logarithm log2) has to be applied to its argument before
the result of the successive applications of the logarithm becomes less than one.
Formally

log∗ n =

{
1 + log∗(log n) if n 6 1,

0 if n > 1.

Consider, for example, an algorithmic problem of input size n. Suppose that a
divide-and-conquer algorithm that solves the problem operates as follows: at each
recursive step, the algorithm divides the problem into sub-problems whose size is
logarithmic in the size of the “bigger” subproblem in the previous recursive step.
When the size of the subproblem becomes constant in n, it solves it. Finally, the
algorithm combines the solution of the subproblems to produce a solution for the
larger subproblems. At the first recursive step, the algorithm divides n into n/ log n
subproblems, each of which has size log n. Then, for each of those log n-sized sub-
problems, the algorithm divides the input into log n/ log log n subproblems, each of
size log log n, etc. The division process continues until the size of the input of each
subproblem becomes constant in n; this happens when the size of the input is log∗ n.
Therefore, the length of the recursion tree of this algorithm is log∗ n.

22

To appreciate how slowly log∗ n grows with respect to n, consider the tower
function

f(n) = 2222
2n

.

For n = 3, f(3) = 2222
23

= 2222
8

= 222256

= 221.1579208923731619542357098500869×1077

= · · ·
(our calculator could not handle more !) However, consider computing log∗(f(3)):

log(f(3)) = log(2222
23

) = 2222
3

, log log(f(3)) = log(2222
3

) = 2223 , log log log(f(3)) =

log(2223

) = 223 , log log log log(f(3)) = log(223
) = 23, log log log log log(f(3)) =

log(23) = 3, and finally, log log log log log log(f(3)) = log(3) < 1. Thus, log∗(f(3)) =
6 only ! This is almost constant in f(3). In fact, it has been noticed that log∗(n) is
rarely beyond 5 for any problem of practical input size to be solved by a machine
(which happens when the input, n, is as large in magnitude as 265536; this number
is greater than the number of atoms in the observable universe !)

23

	1 Introduction
	2 Algorithmic Lovász Local Lemma
	2.1 Theoretical Setup
	2.2 Analysis of the Moser-Tardos Algorithm
	2.2.1 Branching Processes

	2.3 The Moser-Tardos LLL Algorithm Admits Parallelism

	3 The LLL and Packet Routing and Job Scheduling
	3.1 A (c+d)2O(log*(c+d)) Routing Algorithm Exists
	3.2 Applying the Moser-Tardos LLL Algorithm to Construct the Schedule

	4 Concluding Remarks
	Appendix A Proofs of Some Propositions
	Appendix B The Iterated Logarithm Function

