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Let (Ω,F , P) be our underlying measure space. Let φ : R → R be a Borel-
measurable function (We call such a function Borel). Let X : Ω → R be a
Borel-measurable random variable that assumes values in {xi : i ∈ I} for some
I. Define

φ(x) = E(Y | X = x) =
∑
i∈I

E(Y | X = xi)1{x=xi}.

Then φ(x) is Borel, since it is the sum of Borel functions 1{x=xi}. Let

E(Y |X)(ω) := φ(X(ω)) =
∑
i∈I

E(Y | X = xi)1{X=xi}(ω) ∀ω ∈ Ω,

which can be written as

E(Y |X)(ω) =

{
E(Y | X = xi), if X(ω) = xi for some i ∈ I

0, otherwise.
(1)

But for any event A ∈ F , we have

E(Y | A) =
∑

i

yiP(Y = yi | A) =
∑

i

yi
P({Y = yi} ∩A)

P(A)
=

1
P(A)

∑
i

yiE(1{Y =yi}1A)

=
1

P(A)

∑
i

E(yi1{Y =yi}1A) =
1

P(A)
E

(
1A

∑
i

yi1{Y =yi}

)
=

1
P(A)

E(1AY )

=
1

P(A)

∫
A

Y dP.

Therefore, with A = {X = xi}, we get

E(Y |X)(ω) =

{
1

P(X=xi)

∫
{X=xi} Y dP, if X(ω) = xi for some i ∈ I

0, otherwise.
(2)

We note that φ(X(ω)) is σ(X)-measurable (not hard to prove.) The tower
property of conditional expectation implies that

E(E(Y | X)) = E(E(Y | X) | F0) = E(Y ),
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where {∅,Ω} = F0 ⊂ F (courser information wins). In particular, it is the last
equality that follows by the tower property because if E(E(Y | X) | F0) is to be
(a version of) the conditional expectation of E(Y ), then for every A ∈ F0, the
following should hold∫

A

E(E(Y | X) | F0) dP =
∫

A

E(Y | X) dP =
∫

A

Y dP,

where the last equality follows because E(Y | X) is the conditional expectation
of Y conditioned on σ(X). Taking A = Ω we get∫

A

E(E(Y | X) | F0) dP =
∫

A

Y dP =
∫

Y dP = E(Y ).

Moreover, from Eqn. (1) and the linearity of expectations we have

E(E(Y | X)) =
∑
i∈I

E(Y | X = xi)P(X = xi),

and thus

E(Y ) = E(E(Y | X)) =
∑
i∈I

E(Y | X = xi)P(X = xi).

Now with this machinery in hand, derandomization using the method of
conditional expectations is easy. It applies to the class of algorithms where the
random variables constituting the problem are set independently, one at a time.
Assume that our problem is to maximize the value of some objective function
W = f(X1, . . . , Xn), where f : Rn → R is a Borel measurable map. Assume
further that we have at our disposal a randomized algorithm that at every step
j independently sets Xj to some value, and finally achieves E(W ) > δOpt
for some δ 6 1 (thus W and X1, . . . , Xn are random variables). Then we can
derandomize the algorithm to obtain a sequence of random choices b1, . . . , bn

for X1, . . . , Xn such that the invariant

δOpt 6 E(W ) 6 E(W | X1 = b1, . . . , Xj = bj)

holds at every step j, as follows. Consider setting X1. From Eqn. (1) we have

E(W | X1)(ω) =
∑
i∈I

E(W | X1 = xi)1{X1=xi}(ω) ∀ω ∈ Ω. (3)

Set X1 to the value b1 that maximizes Eqn. (3), i.e., b1 is the value xi s.t.
E(W | X1 = b1) = maxi∈I E(W | X1 = xi). This value maximizes E(E(W |
X1)) because

E(E(W | X1)) =
∑
i∈I

E(W | X1 = xi)P(X1 = xi)

6 E(max
i∈I

E(W | X1 = xi)) (4)

= max
i∈I

E(W | X1 = xi))

= E(W | X1 = b1),
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where inequality (4) follows by monotonicity of expectations:∑
i∈I

E(W | X1 = xi)1{X1=xi}(ω) 6 max
i∈I

E(W | X1 = xi) =⇒

E

(∑
i∈I

E(W | X1 = xi)1{X1=xi}(ω)

)
6 E(max

i∈I
E(W | X1 = xi))

if both expectations are finite. It therefore follows that

δOpt 6 E(W ) = E(E(W | X1)) 6 E(W | X1 = b1).

Now consider setting X2, having already set X1 to b1. We have

E(W | X1 = b1, X2)(ω) =
∑
i∈I

E(W | X1 = b1, X2 = xi)1{X2=xi}(ω) ∀ω ∈ Ω.

(5)
Set X2 to the value b2 that maximizes Eqn. (5), i.e., b2 is the value xi s.t.
E(W | X1 = b1, X2 = b2) = maxi∈I E(W | X1 = b1, X2 = xi). This value
maximizes E(E(W | X1 = b1, X2)) because

E(E(W | X1 = b1, X2 = xi)) =
∑
i∈I

E(W | X1 = b1, X2 = xi)P(X2 = xi)

6 max
i∈I

E(W | X1 = b1, X2 = xi)

= E(W | X1 = b1, X2 = b2),

and it follows that E(W | X1 = b1) = E(E(W | X1 = b1, X2)) 6 E(W | X1 =
b1, X2 = b2) (the first equality in this chain follows by the tower property),
and thus δOpt 6 E(W ) = E(E(W | X1)) 6 E(W | X1 = b1) 6 E(W | X1 =
b1, X2 = b2). So in general, the invariant δOpt 6 E(W ) 6 E(W | X1 =
b1, X2 = b2, . . . , Xj = bj) is maintained at every step j of the algorithm. This
explains why this method works !
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