Sub-maximal Oxygen Uptake	(SM)		
[[Workload (W)/Body Mass (kg)]x10.8]+3.5+3.5			
\rightarrow mass = 66kg			
\rightarrow workload 1 = 50W			
\rightarrow workload 2 = 125W			
SM1	15.18		
SM2	27.45		

Slope of line of best fit	
Multi-stage slope prediction:	
(SM2 – SM1)/(HR2 – HR1)	
→ HR1 = 97 → HR2 = 160	
Slope	0.19

Predicted VO2max = $SM2 + [slope x (HRmax - HR2)]$		
\rightarrow HRmax = 220 – age		
= 198bpm		
VO2max	198.2mL/kg/min	

Aerobic Fitness Score	
10 x VO2max	
= 1981.2	

CPAFLA Health Benefit Zone

Excellent: 472+ Very Good: 420-471 Good: 378-419 Fair: 350-377

Needs Improvement: <350

Interpretation of Results: According to the above YMCA fitness test results, this individual is in extremely good shape. However, for already well-trained athletes, sub-maximal VO2max tests tend to over-predict fitness level, as seen here with the predicted VO2max score. Sub-max tests can be useful though, for general populations or perhaps for athletes who are currently injured as sub-max testing puts less stress on the body than max tests do.