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Abstract

Hydraulic geometry equations relate the dimensions of the wetted channel

to the stream discharge the channel conveys. One approach to hydraulic

geometry considers temporal changes at a single location due to variations

in discharge, and is referred to as at-a-station hydraulic geometry: another

approach considers the spatial changes for a common discharge (such as the

bankfull flow), and is referred to as downstream hydraulic geometery. Both

are typically represented using empirically fitted power functions. In the first

part of this chapter, the basic concepts are reviewed, and the physical basis

for hydraulic geometry is presented. A set of reference equations describing

the downstream scaling of Froude-similar channels is derrived: they are exact

power functions of the form P = κ1Q2/5, R = κ2Q2/5 and v = κ3Q1/5, where

the coefficient values are determined by the channel shape, gradient and a

flow resistance parameter. A review of the literature indicates that while at-

a-station relations have mostly been used to assess aquatic habitat, most of
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the research on downstream hydraulic geometry has focussed on the factors

determining the coefficients and exponents of the power functions or on the

physical origin of the observed relations. Empirical studies of downstream

relations have demonstrated that bankfull channel width generally increases

at a rate slightly higher than suggested by Froude-scaling, while channel

depth typically increases at close to the rate associated with Froude-scaling,

but there are notable exceptions. Other key findings include identification

of gradient, grain size and riparian vegetation type as important variables

influencing downstream hydraulic geometry. Progress has been made in un-

derstanding these empirical observations by developing theoretical models

of hydraulic geometry: in particular, the incorporation of grain size and

bank strength has advanced our understanding. Based on this review of the

literature, the future research directions for at-a-station relations relate to

improving their applicability to the practical problems for which they are of-

ten used, while those for downstream relations relate to improving our ability

to model downstream hydraulic geometry and incorporating those relations

in models of landscape evolution.

Keywords: Downstream hydraulic geometry, At-a-station hydraulic

geometry, Open channel hydraulics, Rational regime theory, Stream

channel
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1. Introduction

Consider the following two situations: in the first, an observer moves

virtually instantaneously from the headwaters to the mouth of a river system

while at the same time measuring the channel dimensions and average stream

velocity at regular intervals along the river; in the second, an observer remains

at a single point and repeatedly measures the channel dimensions and flow

velocity over a relatively long period of time (say a decade or more). The

observer traveling down the river system will most likely observe that, as one

travels downstream, the channel becomes wider and deeper, and the average

stream velocity increases: these changes occur because the volume of water

carried by the stream increases as one moves downstream. This observer will

also probably note that the channel gradient declines downstream as well,

a phenomenon related to the processes of sediment erosion, transport and

deposition. Similarly, the observer located at a single position within the

river system is likely to observe that channel width, depth and velocity all

change over time as streamflow increases or decreases. The channel gradient

may fluctuate, but averaged over the channel reach, it will remain very nearly

constant. Hydraulic geometry relations are quantitative representations of

these very basic interactions between the size of the channel and volume of

water that it is conveying. As a matter of computational convenience, these

relations are usually expressed using simple power functions relating channel

dimensions to some fractional power of stream discharge.

In the first example above (in which channel dimensions change down-
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stream), hydraulic geometry relations are determined by the way in which

self-formed river systems are established and maintained via erosion, trans-

port and deposition of sediment by the water flowing through the system.

These relations are associated with timescales at which river systems are able

to adjust to environmental and tectonic forcing (typically on the order of cen-

turies to millennia, depending on the spatial scale of the river system). In

the second example (wherein channel dimensions change over time at a sin-

gle channel reach) the hydraulic geometry of the stream depends on channel

geometry and the way in which flow resistance changes as different parts of

the channel become submerged. For these sorts of hydraulic geometry rela-

tions to hold, the channel morphology must remain stable and the processes

of sediment erosion, transport and deposition can therefore be ignored. The

associated timescales are those over which the channel morphology remains

static (typically years to decades). There are clearly important differences

between hydraulic geometry relations describing spatial variations and those

describing temporal ones, and it is important to make a clear distinction

between these two approaches.

The site-specific (i.e., temporal) relations are referred to as at-a-station

hydraulic geometry relations, and are typically used to assess changes in

water level, the area of the channel that is inundated at a given flow, as well

as the average flow velocity for a range of discharges. These kinds of relations

are particularly useful to biologists assessing aquatic ecosystem dynamics in

general and fish habitat in particular, which depends on both the distribution
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of water depths and the distribution of local stream velocities. They may

also be of use to engineers designing bridges that cross a stream channel or

attempting to situate infrastructure above the expected high-water level for a

given design flood. If channel geometry is stable, then at-a-station relations

are determined entirely by the way in which flow resistance changes with

discharge.

Downstream (i.e., spatial) hydraulic geometry relations usually relate av-

erage channel geometry to a formative discharge (which is often taken to be

the bankfull flow or the mean annual peak flow). For these relations, the

channel geometry is not assumed to be static, it is assumed to be the result

of a dynamic equilibrium established between the channel morphology and

the formative discharge. These relations thus reflect the interaction between

sediment transport dynamics and flow resistance at the formative flow. These

relations are expressions of how a particular river system is structured and

how the channel network has evolved.

Downstream hydraulic geometry relations have been applied in a variety

of contexts. They have been used to estimate design channel dimensions

in stream restoration projects. They have been used to predict the poten-

tial response of stream channels to changes in the formative discharge due,

for example, to flow regulation and/or abstraction. Downstream hydraulic

geometry relations have also been used in landscape evolution models such

as LandMod (Martin, 2000) and CHILD (Tucker et al., 2001) to estimate

the channel dimensions and thus the sediment transport capacity along the
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simulated channel network: in this context, downstream hydraulic geome-

try relations are effectively acting as ’black-box’ models describing channel

dynamics.

What follows is a review of the conceptual underpinnings for developing

hydraulic geometry relations, as well as of the historical context within which

the basic ideas evolved. Then, the more recent research on the topic is

reviewed and synthesized. The chapter concludes with a summary of the

major issues and future research areas that remain to be addressed.

2. Conceptual Basis for Hydraulic Geometry

2.1. Regime Relations for Unlined Canals

While the term hydraulic geometry was first used by Leopold and Mad-

dock (1953), the approach originated with the study of unlined irrigation

canals. The first systematic analysis was conducted on canal systems in In-

dia by Kennedy (1895) who observed that stable canals—those that were able

to transport the imposed sediment loads with the available discharge while

neither aggrading nor degrading—exhibited a relation between velocity and

depth of the form:

v = αdη (1)

where v is the mean flow velocity and d is the mean hydraulic depth of the

canal. The coefficient α and exponent η were found to be site-specific param-

eters. This relation is a kind of site-specific, empirical flow resistance law.
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However, this relation ignores the potential relevance of additional parame-

ters such as channel gradient (S). Lindley (1919) identified this issue, and

proposed the concept of “regime”, wherein the canal geometry is adjusted

to some stable configuration that, while modified locally, does not change

detectably over time.

The early work was consolidated by Lacey (1930), who attempted to

generalize the site-specific, empirical equations developed for canals in India

by introducing a variable to account for the composition of the boundary

materials that he called the silt factor, F , where F = 8D1/2, and D is

the bed material particle diameter, measured in inches. He attempted to

define generally applicable relations between the adjustable quantities for

canal geometry (comprising the wetted perimeter, P , the hydraulic radius,

R, and the canal gradient, S)1 and the governing conditions of discharge,

Q and the silt factor, F . Blench (1969) further developed this method by

defining separate silt factors describing the bed, Fb, and the bank, Fs, so as

to accommodate a wider range of canal configurations. The sets of equations

presented by Lacey and Blench both predict general channel scaling relations

of the form:

1
in geomorphology, the wetted width and mean hydraulic depth are often used in

preference to the nearly equivalent variables P and R.
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W ∝ Q1/2

d ∝ Q1/3 (2)

S ∝ Q1/6

where W is the width of the water surface and d is the mean hydraulic

depth for the corresponding discharge, Q. Lacey (1930) originally selected

simple exponents that were consistent with the data for his analysis, since

he thought that these were most likely to represent physically based, general

relations.

2.2. Adapting Regime Relations to Alluvial Streams

In their pioneering work, Leopold and Maddock (1953) adapted the ideas

from regime relations for canals to the description of natural stream channels.

The key impediment to this is the much larger range of flows experienced in

natural channels and the paucity of accurate measurements of channel dimen-

sions for a given flow: generally, researchers have been effectively restricted

to the consideration of streams near gauging sections, which are chosen for

their relative stability and which are not necessarily representative of typical

reach conditions. Furthermore, alluvial rivers, while frequently modified by

human activity, are fundamentally self-formed systems: canals are not, since

the canal gradient (if not the stable canal width and depth) is imposed by

the canal design.
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Leopold and Maddock (1953) developed both at-a-station and down-

stream hydraulic geometry relations and other researchers have similarly pur-

sued two distinct sets of hydraulic geometry. The at-a-station relations are

typically constructed for flows less than or equal to the bankfull discharge.

Since bed material transport will be negligible over most of this range, the

channel cross section can be considered to be stable and indeed the cross

sectional shape, combined with the associated flow resistance law, is the pri-

mary determinant of the form at-a-station hydraulic geometry relations, a

point made very clearly by Church (1980) and Ferguson (1986).

The downstream relations are directly comparable to the earlier work on

canals. While downstream relations can be constructed for almost any flow

frequency, it has become common practice to use them to describe the re-

lation between the bankfull channel geometry and the bankfull discharge,

which is taken to represent the formative discharge. This is directly analo-

gous to invoking the concept of regime articulated by Lindley (1919). Unlike

the at-a-station relations, downstream hydraulic geometry is not determined

by a static cross section shape, but by the way in which the boundary condi-

tions such as bed and bank stability influence the stable channel form notion-

ally produced by a formative flow. Downstream relations are thus strongly

linked to the development of river grade, since channel stability is influenced

by channel slope and characteristic grain size, both of which are important

elements of river grade.
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2.3. Empirical Hydraulic Geometry

Much of the research on hydraulic geometry, including the original analy-

sis by Leopold and Maddock (1953), is based entirely on empirical analysis of

the available streamflow data. For these kinds of empirical analyses, steady

state continuity is the governing relation that guides our understanding of

the problem. It is typically expressed as:

Q = Wdv (3)

The analysis by Leopold and Maddock (1953) was based on the data

available for USGS stream gauging stations (i.e., W , d, and v); they were

careful to point out early in their paper that they chose the variables they

did not because they were the best suited to describing the channel geometry

but because the data were commonly available. Importantly, they recognized

that the channel gradient, S, the resistance to flow and the sediment load

supplied to the stream channel were also relevant.

Leopold and Maddock (1953) concluded that both at-a-station and down-

stream relations could be reasonably expressed as power functions, though

they were careful to note that their analysis was based on cross sections cho-

sen for their suitability as gauging sections, not for their representativeness

of the local river conditions, and that deviations from the general power re-

lations do occur for both at-a-station and downstream relations. They used

the following set of equations to describe hydraulic geometry:
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W = aQb

d = cQf (4)

v = kQm

The coefficients a, c, and k, varied between sites for at-a-station relations and

between stream channel networks for downstream relations. The exponents b,

f , and m also varied but to a lesser degree. Leopold and Maddock’s average

exponent values for at-a-station relations for 20 different river reaches are

0.26, 0.40, and 0.34, for b, f , and m, respectively. Their average exponent

values for the downstream relations are 0.50, 0.40, and 0.10, for b, f and m,

respectively2. The continuity equation was used by Leopold and Maddock

to constrain the values of the coefficients and the exponents as follows:

Q = W · d · v

= aQb · cQf · kQm (5)

= a · c · kQb+f+m

thus:

2
Unlike many of the researchers who have continued to investigate downstream hy-

draulic geometry relations, Leopold and Maddock used the mean annual discharge to

define their key results, not the bankfull flow.
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a · c · k = 1

b+ f +m = 1 (6)

In practice, researchers have focused their attention on the hydraulic ge-

ometry equations for width and depth, with the velocity equations being

largely ignored. It is worth noting that hydraulic geometry equations for

velocity do not describe any particular aspect of the channel geometry per

se, but rather they are necessary to satisfy continuity when using an empiri-

cal approach. Thus, the empirical approach obscures another key element of

hydraulic geometry, the channel gradient, S, which was explicitly included

in the early work on canals.

2.4. Theoretical Hydraulic Geometry

A theoretically based governing equation that includes channel gradient

can be developed using the equations for open channel flow (e.g. Parker,

1979). By combining an equation relating velocity to slope, depth and flow

resistance with a continuity equation, we can define a modified but physically

explicit version of (3). While this approach does not provide us with an ana-

lytical form of the hydraulic geometry equations similar to (4) and probably

does not improve the accuracy with which field observations of W and d can

be empirically correlated to Q, it does define the problem in a more struc-

tured way, making the key considerations (and future research questions)
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more transparent. A general equation for predicting stream velocity (i.e.,

the Chèzy equation) takes the form:

v = �
√
RS (7)

where R is the hydraulic radius (given by the ratio A/P , where A is the

cross sectional area for flow and P is the wetted perimeter) and � is a gen-

eralized representation of some flow resistance law. In the Darcy-Weisbach

formulation, � =
�

8g/f , where g is the acceleration of gravity and f is

the Darcy-Weisbach friction factor, commonly estimated using the Keulegan

equation (after Ferguson, 2007):

�
8

f
=

�
1

κ

�
ln

�
11R

ks

�
(8)

where κ is the Von Karman constant (≈ 0.4) and ks is the roughness length,

which is related to the bed sediment texture when individual grains dominate

the flow resistance and to the dimensions of primary bedforms like ripples

and dunes when they are present. The Strickler-Manning flow resistance

equation is equivalent to (after Ferguson, 2007):

� = α

�
R

D

�1/6

(9)

where D is a characteristic grain size for the channel bed and α is a constant

that depends on whether the characteristic grain size is taken to be the
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median (i.e., the D50) or something representative of the coarser end of the

bed surface distribution (e.g., the D84).

Using the geometric variables applicable to the open channel flow equa-

tions, continuity can be expressed in the following way:

Q = PRv (10)

Clearly, P is similar to W and R is similar to d. For a simple rectangular

channel, the relation between the two sets of geometric variables [W, d] and

[P,R] is related to the width/depth ratio, ξ, in the following way:

W

P
=

R

d
=

ξ

ξ + 2
(11)

Plotting this function reveals that the difference between [W, d] and [P,R]

is less than 10% for relatively wide channels (ξ ≥ 17), but approaches 35%

for narrow ones (ξ ≈ 4), suggesting that the different sets of variables are

likely to produce similar hydraulic geometries for wide gravel bed streams

but that the results for narrow, deep sand bed streams with cohesive banks

could be quite different (Figure 1).

If we combine (7) with (9), then rearrange it to isolate the dependent

geometric variables on one side of the equation and the independent vari-

ables on the other, we get a modified, theoretically based version of (3) that
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includes the channel gradient:

Q

� = PR3/2S1/2 (12)

This equation clearly indicates that hydraulic geometry relations depend

on discharge and on some sort a relative roughness term (R/ks or R/D),

which turns up in the common flow resistance laws (e.g., (8) and (9)). An-

other issue is that the timescale for adjustment of the channel cross section

(P and R) is typically much shorter than that required to achieve changes in

the channel gradient, S. For natural stream channels over short timescales,

S may be better interpreted as an independent variable rather than a depen-

dent one (e.g. Bray, 1973), thus:

Q

�S1/2
= PR3/2 (13)

Hydraulic geometry is fundamentally at least a three-variable problem. In

fact, more than three independent variables are involved, since—for a unique

combination of Q, �, and S values—there is a wide range of geometries

that satisfy (13) (defined by PR3/2 = constant), indicating that yet more

information is required.

In the case of an at-a-station relation, the missing information is the

shape of the channel cross section which, once known, allows us to specify

P as a function of R (and vice versa), and then derive a unique solution for

a given set of independent variable values (see Ferguson, 1986). For down-
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stream relations, the missing information is less easily defined, but in the

author’s opinion, as well as that of others (Huang and Nanson, 1998; Millar,

2005; Eaton and Church, 2007), it must be related to the factors control-

ling the stability of the channel bed and banks at the formative discharge.

Various researchers have attempted to complete a physically based theory

for downstream hydraulic geometry. These theories have been based on one

of two ideas: the threshold approach and the maximum efficiency approach

(Ferguson, 1986). In the threshold approach (Lane, 1957; Henderson, 1961;

Li et al., 1976; Stevens, 1989), applicable to channels that do not transport

the material comprising their boundary at an appreciable rate, the channel

at bankfull flow is assumed to be everywhere at the threshold of motion.

For channels that are assumed to transport their bed material, various

approaches have been developed based on some representation of the princi-

ple of maximum efficiency proposed by Gilbert (1914), wherein a channel is

assumed to adjust so that its bedload is transported most efficiently (Lang-

bein and Leopold, 1966; Yang, 1976; Kirkby, 1977; Chang, 1979; White et al.,

1982; Davies and Sutherland, 1983; Eaton et al., 2004). Many of these prin-

ciples turn out to be equivalent (White et al., 1982; Davies and Sutherland,

1983), and that proposed by Eaton et al. (2004) has been successfully tested

experimentally (Eaton and Church, 2004) and related to a process-form in-

teraction that produces meandering (Eaton et al., 2006).

Equation (13) can be used to demonstrate the effect of scale alone on

hydraulic geometry by applying it to channels with a range of different sizes
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but which are geometrically similar and Froude-similar (after Griffiths, 2003).

Such channels will have the same shape, η, (given by η = P/R), relative

roughness, R/D, (implying that � will be constant), and dimensionless shear

stress, τ ∗, (given by τ ∗ = τ/(γs − γ)D50, where τ is the average shear stress

acting on the bed, γs is the unit weight for sediment grains, γ is the unit

weight of water and D50 is the median bed surface size). The absolute di-

mensions of any channel can be related to a single length scale (Lr), provided

a reference bed geometry is adopted. The reference bed geometry is given

by Po, Ro and Do. The geometry of a channel that is Lr times larger than

the reference channel is given by:

P = PoLr

R = RoLr (14)

D = DoLr

If the variable definitions for P and R are substituted into (13) we get,

with a slight rearrangement of terms:

Q

PoR
3/2
o �S1/2

= L5/2
r (15)

By first setting the right-hand side of (15) equal to (P/Po)5/2 and then to

(R/Ro)5/2, we can generate hydraulic geometry equations for P and R that

are exact (as opposed to approximate) power functions that have exponents
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of 2/5 for P and R. If we use continuity to determine the equation for v, we

end up with another power function (exponent of 1/5). The complete set of

equations is:

P = κ1Q
2/5 κ1 =

�
η3/2

�S1/2

�2/5

R = κ2Q
2/5 κ2 =

�
1

η�S1/2

�2/5

(16)

v = κ3Q
1/5 κ3 =

1

κ1κ2

where κ1, κ2 and κ3 are coefficients that depend only on the channel shape,

η, the relative roughness (which determines the flow resistance, �), and the

channel gradient. Any changes in channel shape, flow resistance and/or chan-

nel slope with discharge will introduce deviations from power functions with

exponents of 2/5, 2/5 and 1/5 for width depth and velocity, respectively. It

is worth noting that Church (1980) derived these same results from dimen-

sional analysis. These theoretically derived exponents therefore form a useful

reference against which to compare field data (cf. Parker et al., 2007). More

generally, these equations will describe the hydraulic geometry of all sets of

channels for which channel shape (η), flow resistance (�) and gradient (S)

are known for all discharge values.

In Figure 2, data from Andrews (1984) are compared against hydraulic

geometry relations for which W ∝ Q2/5 and d ∝ Q2/5, as suggested by (16).
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While there are clearly systematic deviations from the Froude-scaling trend,

it does explain much of the variance in the dataset. Furthermore, the devi-

ations appear to correlate with the characteristic riparian vegetation (which

Andrews classified as either “thin” or “thick”), and thus presumably with

the erosional resistance of the channel banks. The comparison between the

b = f = 2/5 lines and the data is only approximate, since (16) relates [P,R]

to Q, whereas only the bankfull [W, d] are reported in Andrews (1984). In

addition, the coefficients κ1 and κ2 depend on S, which varies systematically

with Q for the dataset. However, the channels in Andrews’ dataset all have

relatively large W/d ratios, suggesting that it is appropriate to substitute the

variables [W, d] for [P,R], and the dependence of κ1 and κ2 on S is relatively

weak, since S is raised to the 1/5th power in both.

In the following sections, the recent research will be reviewed and dis-

cussed with reference to the underlying theory. The review will first address

the major issues and advances for at-a-station relations and then for down-

stream relations. Finally, major opportunities for research will be identified.

3. Recent Research

3.1. At-a-Station Relations

Provided that the channel geometry remains stable, at-a-station hydraulic

geometry simply describes how an increase is discharge is accommodated.

The relations depend entirely on the channel shape and the resistance to

flow (Ferguson, 1986). If both can be described mathematically, then the
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hydraulic geometry equations can be derived analytically: if one assumes

that Manning’s n remains constant at all flows, then at-a-station hydraulic

geometry relations can be described using power functions in which a trian-

gular cross section would be typified by b = f = 0.376 and m = 0.25 and a

parabolic cross section would be typified by b = 0.23, f = 0.46 and m = 0.31

(after Ferguson, 1986).

Using the Keulegan flow resistance law in which flow resistance varies

with flow depth, Ferguson (1986) showed that, while they can be defined

analytically, the hydraulic geometry relations for rectangular, parabolic, and

triangular cross sections cannot be exactly described by power functions. All

of these derivations necessarily assume that the energy gradient at a cross

section remains constant, as well, which is often not the case. Addition-

ally, significant flood events that alter the channel morphology also alter the

characteristic hydraulic-geometry. For example, Lisle (1982) showed a sig-

nificant shift in the values of b and f for at-a-station relations at gauges in

California that were impacted by a large flood in 1964, as well as a longer-

term drift back towards to original values as the channels recovered from the

disturbance.

While some workers have proposed modified curve-fitting procedures to

improve the performance of at-a-station hydraulic geometries and to account

for changes in channel shapes (e.g. Bates, 1990), the changes in energy gra-

dient at a given cross section are more difficult to incorporate (cf. Carling,

1991). Given that the variations in b, f and m for individual cross sections
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are often as large as the variations in the mean exponent values for a range

of streams (Rhodes, 1977), it is fair to conclude that the applicability of at-

a-station hydraulic geometry relations is limited by the spatial variation in

channel shape and the variation of the local energy gradient with discharge.

The development of both 2D and 3D computational fluid dynamics mod-

els (CFD models) has obviated the need for at-a-station hydraulic geometry

equations in many circumstances. These computer models are now capa-

ble of modeling the spatial distribution of depth and velocity for a range of

flows, provided sufficiently detailed information on the bed geometry and bed

roughness are available. However, these models have fairly onerous data re-

quirements, and the 2D models are restricted to streams wherein the velocity

profile at any point in the stream can be mathematically described.

At-a-station relations may continue to be a suitable tool for studies in

which the detailed information and the level of accuracy of CFD predictions

are not required. In assessments of fish habitat, it is often desirable to cal-

culate the percent of usable habitat, but not to determine the distribution

of that habitat. Hogan and Church (1989) present a methodology for assess-

ing instream fish habitat using at-a-station relations based on the average

response to changes in flow of a number cross sections in a study reach,

rather than an individual cross section. Using this approach in two different

streams with complex morphologies influenced by large woody debris, they

were able to detect the impacts of logging on fish habitat. Jowett (1998)

also used at-a-station relations to characterize fish habitat, and found that
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the at-a-station based predictions were close to those from a more detailed

assessment of fish habitat.

In some circumstances, such as in braided rivers, the channel geometry is

not generally stable, making application of CFD models difficult. Indeed, it

is often difficult to even reliably measure the discharge in braided streams.

Ashmore and Sauks (2006) showed that, for flows greater than about half of

the mean annual peak flow, almost all of the variation in discharge was taken

up by changes in the wetted width in their study reach. Their equation for

width is:

W = 4.722Q0.978 (17)

They also demonstrated that this relation was reasonably robust, and

could be used to predict the discharge from the wetted width measured from

oblique aerial photographs at nearby reaches of the Sunwapta River and in

subsequent years at their study reach.

In other circumstances, the resistance to flow may be much too compli-

cated for the existing CFD models. Lee and Ferguson (2002) examined the

change in flow resistance with stage in step-pool systems, and they found

that due to very rapid changes in flow resistance with increasing discharge,

velocity changed most rapidly with discharge (m varied from 0.51 to 0.84),

followed by changes in depth (f varied from 0.19 to 0.36). Comiti et al.

(2007) also measured flow resistance in the step-pool Rio Cordon, and they
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also found that changes in velocity were the primary means by which changes

in discharge were accommodated (m = 0.49, on average), followed by changes

depth (f = 0.29, on average). Their results also point out that, while the

coefficient for the velocity relations varied over a moderate range (m varied

from 0.24 to 0.63), the exponents of the width and depth relations were far

more variable (b varied from 0.03 to 0.47 and f varied from 0.08 to 0.44).

For both braided and step-pool streams, at-a-station hydraulic geome-

try relations are likely to remain important tools for characterizing the hy-

draulic changes with discharge. Similarly, streams in which large woody de-

bris produces physically and hydraulically complicated channels (e.g. Hogan

and Church, 1989) are unlikely to be well described by the existing CFD

models.

3.2. Downstream Relations

While Leopold and Maddock (1953) used a range of flow frequencies to

investigate downstream hydraulic geometry relations, subsequent work has

focused on relating the channel geometry to a formative discharge, moving

beyond spatial correlation and towards causation. The concept of a forma-

tive discharge requires consideration: at some level, it is entirely artificial,

since the channels of natural streams are ultimately the product of a his-

tory of flows having various magnitudes that interact with other geomorphic

processes controlling the supply of sediment and organic material (primar-

ily woody debris) to the channel. The literature on formative discharge is
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reviewed below.

The recent work on downstream hydraulic geometry has been classified

into one of two groups: the first group comprises those papers focusing on

data collection and analysis under the heading of Empirical Hydraulic Geom-

etry ; and the second group comprises papers focusing on developing hydraulic

geometry relations from the underlying theory of open channel flow, under

the heading Theoretical Hydraulic Geometry.

3.2.1. Defining Formative Discharge

There are two primary means of defining the formative discharge: one

is based on the flow frequency or flow duration; the other is based on the

morphology of the stream. The frequency-based definition of the formative

discharge, referred to herein as the effective flood, is the flow that is both

frequent enough and powerful enough to do the most geomorphic work (and

hence be geomorphically most effective). The morphologic definition, referred

to as the bankfull flood, is based on the elevation of the floodplain surface

since, once the water level reaches the banktop, and additional discharge is

likely to flood out onto the floodplain, only minimally increasing the water

depth (and thus shear stress) in the channel itself. While the association

between channel dimensions and discharge is conceptually the clearest for the

bankfull flood, this definition can only be applied to streams that have a self-

formed floodplain and which are neither actively aggrading nor degrading.

For systems with stable, identifiable floodplains, the bankfull flood seems
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to be associated with a nearly constant flow frequency. Harvey (1969) found

that bankfull floods often had a return period of between 1 and 2 years, ex-

cept for streams dominated by groundwater flows, in which the bankfull flow

return period was greater, a conclusion also reached by Petit and Pauquet

(1997) in a more recent study. In contrast, Williams (1978) considered vari-

ous means of defining the bankfull flow and estimated the flood frequency of

each definition: he concluded that the bankfull flow had no common identifi-

able flood frequency. Petit and Pauquet (1997) found that the flood frequency

associated with the bankfull flood was 0.7 years for the smallest streams in

their study, but rose to 1.1 to 1.5 years for streams with a drainage basin

greater than 250 km2, suggesting that the frequency of bankfull floods may

be slightly scale-dependent. Castro and Jackson (2002) also observed a sys-

tematic variation in the frequency of bankfull flows: they found that the

bankfull return period in humid regions of the Pacific Northwest averaged

about 1.2 years, but that the return period rose to 1.4 to 1.5 years in drier

regions.

Bray (1975) assessed the statistical correlation between the channel geom-

etry of gravel-bed streams and various potential definitions of the formative

discharge, including the mean annual flow, 1.5-yr event, 2.0-yr event, 5.0-yr

event 10-yr event, and bankfull flood. The correlations between the observed

channel geometry and the various definitions of the formative flow are all rel-

atively strong, suggesting that the precise choice of formative discharge is not

critical. Viewed another way, Bray’s analysis implies that there is a finite,
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irreducible uncertainty associated with trying to correlate channel geometry

with a single, representative discharge value. The best correlation in Bray’s

analysis was produced by using the 2-year flood, which is also most similar

to the bankfull flood; this implies that something like the bankfull flow is

an appropriate (if imperfect) representation of the formative discharge. In-

terestingly, Bray (1975) advocated using the 2-year flood definition instead

of bankfull because it can be applied to actively incising streams where no

floodplain is apparent. Andrews (1980) also concluded that the effective flood

and bankfull flood were very similar, having return periods between 1.18 and

3.26 years. Andrews (1982) also showed that flows less than bankfull have

little effect on the morphology of gravel-bed rivers, supporting the idea that

the effective flood and bankfull flood are nearly identical.

There is some evidence that different aspects of channel morphology de-

velop in associated with different flow frequencies (i.e., that formative dis-

charge depends on the aspect of channel morphology being considered).

Pickup and Warner (1976) argued that, for the gravel bed streams in the

Cumberland Basin, UK, the channel capacity was set by a somewhat rarer

bankfull flood (having a return period of between 4 and 10 years) that was

capable of eroding the channel banks, but that the bed surface was adjusted

to the more frequent effective flood (return period of 1.15 to 1.40 years). In

contrast, Emmett and Wolman (2001) found that streams having snowmelt-

dominated flow regimes often developed a highly armored surface, with the

result that the effective flood was less frequent than the bankfull flood. The
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ratio of the effective flood to the bankfull flood in their study streams varied

from 0.98 to 1.31, with the upper limit representing a doubling of the return

period. Finally, various researchers have pointed out that the influence of

large, rare events on channel geometry is undoubtedly important, particu-

larly in arid environments, since extreme floods can quite quickly alter the

channel geometry (e.g. Gardner, 1977; Desloges and Church, 1992; Merritt

and Wohl, 2003).

In summary, then, while it is possible for different components of the

channel morphology to be adjusted to flows of different frequencies, there

is a general consensus that the formative discharge approximately conforms

to the bankfull flood when a stable floodplain is present, or to a flood with

a return period of about 1.5 to 2.0 years (at least in the relatively humid

climates typical of most of the studies cited above). Furthermore, when de-

veloping downstream hydraulic geometry relations, it is preferable to either

use a single, convenient, well defined estimate of the formative discharge

(e.g. Bray, 1975) or to employ a range of bankfull discharge estimates (e.g.

Radecki-Pawlik, 2002). Researchers should also bear in mind the funda-

mental limitations of the basic assumption that channel morphology can be

uniquely related to formative discharge and should consider the potential

role of geomorphic history in shaping the morphology of any given channel

(Church, 1995): by using a single, representative discharge to explain hy-

draulic geometry, there is bound to be some irreducible level of uncertainty

associated with the implied assumption of equilibrium between the channel
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geometry and the chosen representative discharge.

3.2.2. Empirical Hydraulic Geometry

Since the original work by Leopold and Maddock (1953), various studies

have confirmed the general form of their downstream equations for which

b ∝ 0.5 and f ∝ 0.4 (Mikhailov, 1970; Bray, 1973; Emmett, 1975; Charlton

et al., 1978; Parker, 1979; Hey and Thorne, 1986). Figure 3A presents the

downstream hydraulic geometry data from a wide range of sources, including

both gravel-bed and sand-bed channels, as well as trend-lines fit to all of the

data. Figure 4A presents only the gravel-bed streams and trend-lines for

those data. The relations fitted to the data in Figure 3A (b = 0.536 and

f = 0.384) are quite close to Leopold and Maddock’s original results of

b = 0.50 and f = 0.40, but the data are relatively scattered (the standard

error of the estimate for W and d is about 30%). When only the gravel-bed

data are included in the regression, then the scatter is somewhat reduced (the

standard error drops to about 24% for width and 19% for depth), but the

hydraulic geometry equations change very little. In both cases, the scatter

about the common trend masks systematic deviations within several of the

datasets.

For the individual datasets, the standard errors for the estimates of width

and depth are lower, typically around 15% for both width and depth. The

implication is that the irreducible uncertainty associated with the use of

a single representative discharge to explain all of the variance in channel
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geometry is probably in the range of 10 to 20%, depending on the system

being studied.

In some of the case studies, the exponents of both width and depth re-

lations are systematically different from the general trend, while in others

the coefficients (primarily of the width relation) are different. Coefficient

variations have been related to the vegetation found on the channel banks

(Charlton et al., 1978; Andrews, 1984; Hey and Thorne, 1986; Huang and

Nanson, 1997) and to the material forming the channel boundary (e.g. Lane,

1955; Ferguson, 1986; Church, 1992), both of which influence the erodibility

of the channel boundary and thus the shape of the channel. Variations of

the exponents seem to be produced in a number of ways. Pitlick and Cress

(2002) report that, for a section of the Colorado River (the data for which

are presented in Figure 3), width increases downstream less quickly than

depth (b = 0.32 and f = 0.53), a result attributed to a decline in sediment

supply in the downstream direction. Ellis and Church (2005) and Tabata

and Hickin (2003) observe that in anabranches of multiple thread channel

systems (shown in Figure 3), width changes more quickly than expected as

Q increases, and depth changes less quickly (b = 0.60, f = 0.25 and b = 0.64,

f = 0.19, respectively). These two studies are examples of simple scaling

relations, in which only one variable is changed (i.e., discharge) and the oth-

ers (i.e., channel gradient, bed sediment texture and bank strength) remain

constant.

Wohl (2004) identifies a limit scale for mountain streams below which
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regular hydraulic geometry relations are poorly developed. Once the ratio of

total stream power to the characteristic grain size drops below about 10,000

W/m2 (or equivalently kg/s3), the fluid forces presumably become too small

to shape the channel.

As is evident in Figure 3, there are systematic differences in both channel

geometry and sediment transport characteristics between gravel- and sand-

bed streams. At the same discharge, sand-bed channels tend to be deeper

than gravel-bed channels and to have lower channel gradients (Xu, 2004):

however, the intensity and duration of sediment transport tends to be much

higher in sand-bed streams (Schumm, 1985; Dade, 2000; Church, 2006). The

sedimentology of reach also affects how a stream will respond to environmen-

tal changes (e.g. Gaeuman et al., 2005).

In their analysis of a large number of both gravel-bed and sand-bed

streams from a range of environments, Lee and Julien (2006) were able to

generate a single set of equations by including both grain size and channel gra-

dient as independent variables. The success of their approach demonstrates

the importance of considering more of the relevant independent variables

than merely Q. Their equations for predicting width and depth are:

W = 3.004Q0.426D−0.002
50 S−0.153 (18)

d = 0.201Q0.336D−0.025
50 S−0.060
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A similar analysis of gravel-bed rivers was conducted much earlier by

Bray (1973). He observed that, for gravel-bed rivers in Alberta, Canada, the

inclusion of channel gradient, S, as an independent variable improved the fit

of the equations for d and v, but not for W . Bray (1975) also attempted a

physical interpretation of his empirical results: he reported that the average

dimensionless shear stress, τ ∗, for his 1973 dataset was nearly constant at

a value of about 0.039, or roughly 30% higher than the threshold for gravel

entrainment, τ ∗c (assuming τ ∗c = 0.03). Bray’s equations, in SI units are:

W = 4.05Q0.515S−0.035

d = 0.107Q0.265S−0.199 (19)

v = 3.02Q0.220S0.234

In recently glaciated environments, the effects of the last glaciation on

the character and distribution of alluvial sediment are quite pronounced, as

are the effects on channel gradients (e.g. Brardinoni and Hassan, 2006). In

extreme cases, the spatial complexity of post-glacial landscapes introduces

enough variability that the underlying hydraulic geometry relations can be

nearly obscured (Coates, 1969; Arp et al., 2007). Other geomorphic processes,

such as debris flows, and the distribution of bedrock type can also influence

downstream hydraulic geometry relations, resulting in deviations from the

normal hydraulic geometry exponents and in step changes in scaling relations
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(Montgomery and Gran, 2001). In their study of bedrock channels in a wide

range of environments, Wohl and David (2008) found that the scaling typical

of alluvial channels (where b ≈ 0.50 and f ≈ 0.3) holds, but that variability

the relations was not unambiguously associated with changes in bedrock type,

suggesting that other factors such as bedload supply also exert a significant

influence on the form of the hydraulic geometry relations.Together, these

results suggest that a single set of hydraulic geometry equations can only be

expected to hold so long as the boundary conditions (primarily the valley

slope and the material forming the channel bed and banks) remain relatively

constant or vary in a smooth, predictable way.

Other researchers has sought to improve the predictive ability of their sta-

tistical models by combining the important variables to form non-dimensional

ones. For example, Andrews (1984) included sediment size in his analysis of

the hydraulic geometry of gravel-bed streams in Colorado, but rather than

using D50 as an independent variable, he normalized W , d and Q by D50 of

the surface, following an earlier analysis by Parker (1979). The dimensionless

variables are:

W ∗ =
W

D50
, d∗ =

d

D50
, Q∗ =

Q

D2
50

�
(s− 1)gD50

(20)

The parameter s is the specific gravity of the sediment grains. Interestingly,

while using Q∗ does increase the information content of the variables used to

derive the statistical model, it does not greatly improve the model fit when
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considering gravel-bed streams (cf. statistics for trend-lines in Figure 4A and

B). Nevertheless, the dimensionless approach is quite useful for distinguish-

ing between sand-bed and gravel-bed rivers (see Figure 3A), and relations

between [W ∗, d∗] and Q∗ for sand-bed and gravel-bed rivers taken together

follow a common trend-line with exponents similar to that for Froude scaling.

The work presented by Andrews (1984) demonstrates the influence of

vegetation on channel form. The most important results of the analyses

presented by Andrews (1984) are: (1) that vegetation type has a discern-

able effect on the form of the hydraulic geometry relations; and (2) that

the sets of relations for different vegetation types are associated with a

constant dimensionless shear stress. His equations for thick bank vegeta-

tion (W ∗ = 3.19Q∗ 0482, and d∗ = 0.491Q∗ 0.370) are associated with dimen-

sionless shear stresses that are, on average, nearly twice the entrainment

threshold for gravel (τ ∗ ≈ 0.058), while his equations for thin vegetation

(W ∗ = 4.94Q∗ 0478, and d∗ = 0.485Q∗ 0.377) are associated with dimensionless

shear stresses close to the threshold (τ ∗ ≈ 0.03). Notice also that vegetation

appears to influence the coefficients but not the exponents of the hydraulic

geometry relations. These results support the idea that hydraulic geometry

relations are constrained by boundary material strength and further sug-

gest that denser riparian vegetation increases material strength such that

the channel can support higher average shear stresses. Andrews’ equations

indicate that more densely vegetated channels are, on average, narrower than

less densely vegetated ones, which is presumably the means by which bank
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vegetation can influence in-channel shear stresses.

Hey and Thorne (1986) further improved our understanding of the effects

of bank vegetation on downstream hydraulic geometry. They grouped gravel-

bed streams in the United Kingdom into four categories (types I, II, III and

IV) representing increasingly dense riparian vegetation. In relations between

the channel geometry and a set of independent variables including bank veg-

etation type, bankfull discharge (Q), sediment texture (D50, D84 both of the

surface) and the sediment load (Qs) estimated from a sediment transport

equation applied to the bankfull discharge, they found that the coefficient

for the width relation decreased with increasing vegetation density, similar

to the pattern reported by Andrews (1984) and that the coefficient for depth

increased. In addition to the standard geometric variables they also analyzed

P and R, which are arguably more appropriate variables to consider, and the

R2 values for the equations predicting P and R were both slightly better rel-

ative to the equivalent equations using W and d. The most parsimonious

models for predicting width that Hey and Thorne present, wherein all coef-

ficients and exponents are significant at the 95% confidence level, includes

only vegetation type and Q (i.e., where a = 4.33, 3.33, 2.73, 2.43 for types I,

II, III and IV, respectively). The most parsimonious equation for predicting

depth includes Q and D50, but does not depend on vegetation type ( for

types I, II, III and IV).

Figure 5A presents a plot of all data for which information on the char-

acteristic bank vegetation is available. The trend-lines in the figure have
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been fit to all of the data from Charlton et al. (1978), Andrews (1984), and

Hey and Thorne (1986). The channel widths for more densely vegetated

channels consistently tend to fall below the regression line, and widths for

more sparsely vegetated channels tend to fall above the line. Interestingly,

there is little evidence for a similar systematic segregation of channel depth

as a function of vegetation type. When the data are transformed into the

dimensionless variables [W ∗, d∗] and plotted against Q∗, the general pattern

remains virtually unchanged, as do the standard errors. However, while b

and f are statistically different for relations between [W, d] and Q, they are

not for relations between [W ∗, d∗] and Q∗.

Further evidence that gravel-bed channels with denser vegetation have

narrower, deeper channels is presented by Huang and Nanson (1997) and

Parker et al. (2007), while Millar (2000) and Brooks et al. (2003) demon-

strate that removal of vegetation produces channel widening. Interestingly,

Bergeron and Roy (1985) and Allmendinger et al. (2005) found several cases

in which forested reaches were actually wider than reaches with riparian

areas dominated by grasses. Bergeron and Roy (1985) attribute the differ-

ences to higher density of roots in their grass-covered study reach, while

Allmendinger et al. (2005) argue that the grass is critical for trapping and

stabilizing the suspended sediment deposits that produce bar growth and

hence channel widening, and that grass growth under the forest canopy was

effectively suppressed. Thus, while grass-covered banks in the study streams

of Allmendinger et al. were eroded more quickly, their inner banks were able
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to advance even more quickly than those in the forested reaches. This exam-

ple demonstrates that even the role of vegetation on hydraulic geometry may

be far from straightforward. The potential influence of large woody debris

on channel geometry undoubtedly introduces further complications (Hickin,

1984).

3.2.3. Theoretical Hydraulic Geometry

For relatively simple boundary conditions and transport dynamics, it is

possible to construct a complete, physically based model of downstream hy-

draulic geometry. Wobus et al. (2006) present a model predicting the ge-

ometry of channels incising into bedrock that is based on the distribution of

shear stress (and hence inferred erosion rate) across the channel. The eroding

channels all have a nearly constant width-to-depth ratio (ξ) of about 3.5, and

exhibit downstream scaling in which b = f = 0.4, a result that is identical

with the Froude scaling argument summarized by equation (16). Their model

also illustrates the influence of local channel gradient, S, on channel width

(W ∝ S0.2), which is particularly significant where bedrock uplift rates are

spatially variable.

Finnegan et al. (2005) also developed a theoretically based equation for

the hydraulic geometry of bedrock channels, then successfully tested it. They

used the equations for open channel flow to derive an equation for predicting

the width of bedrock channels as a function of the channel shape (indexed

by the width/depth ratio, ξ), the discharge, channel gradient, and resistance
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to flow (in short all of the independent variables in (13) and the information

required to relate W to d). Their equation is:

W =
�
ξ(ξ + 2)2/3

�3/8
Q3/8S−3/16n3/8 (21)

Once the boundary conditions become more complex and both erosion

and deposition are allowed to occur (i.e., the sediment transport is no longer

supply-limited), it becomes more difficult to arrive at an explicit theory of

hydraulic geometry. This point was made quite well by Parker (1979), who

was able to generate a series of regime relations for gravel-bed channels that,

once one of the relations was specified, could be used to theoretically derive

the others. His analysis was conducted using the dimensionless variables in

(20), as well as a dimensionless sediment transport rate, Q∗
s:

Q∗
s =

Qs

D2
50

�
(s− 1)gD50

(22)

where Qs is the volumetric sediment load associated with the discharge, Q.

His regime relations can be written:

W ∗ = 3.09 · 106Q∗1.296
s Q∗−0.296

d∗c = 3.56 · 10−6Q∗−1.075
s Q∗1.075 (23)

S = 1.37 · 104Q∗1.062
s Q∗−1.062

The variable d∗c refers to the center depth of a channel having a flat bottom
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and parabolic bank profiles. These relations nicely show the dependence

of channel geometry on the sediment supply to the channel and the dis-

charge available to transport it, while his derivation shows the influence that

boundary erodiblity has on the geometry. Parker tested his theory against

the dataset of Bray (1973), showing that by using a given relation between

W ∗ and Q∗ to eliminate Q∗
s, the regime relations were able to reasonably

reproduce the remaining hydraulic geometry equations.

However, Parker’s analysis assumes that the threshold for bank erosion is

the same as that for bed erosion, thus ignoring the potential role of vegeta-

tion in stabilizing the stream banks and limiting Parker’s analysis to channels

having no significant quantities of cohesive sediment in their overbank de-

posits. It also reflects only the narrowest possible channel for which the

supply may be transported by the available discharge.

Others have shown that there exists a wide range of solution geometries

for a given set of governing conditions (e.g. White et al., 1982), even when

a bank stability analysis has been applied (Millar and Quick, 1993). While

some have recently argued that a unique solution can be isolated by ap-

plying the principle of least action (Huang and Nanson, 2000) or minimum

energy expenditure (Huang et al., 2004), the author and others claim that

the extremal hypotheses used to close regime models are really numerical

formalisms that allow a 1D model to describe a 3D reality by encapsulating

feedbacks occurring in the cross-stream dimension, a dimension to which 1D

regime models are obviously blind, since they employ variables that describe
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the average cross section dimensions (Eaton et al., 2006).

Since channels achieve stability by adjusting their form until they reach

their most stable condition, for which the sediment supplied to the system

can be transported by the available stream flow (analogous to the bottom of

a potential energy well), it is useful to consider the problem from the point-

of-view of flow resistance. When the maximization of the system-scale flow

resistance is used, then the partitioning of flow resistance can be related to

the mechanisms responsible for establishing channel stability (Eaton et al.,

2004): reach-scale flow resistance is related to changes in channel sinuosity

and channel pattern (Eaton and Church, 2004), grain-scale flow resistance is

related to the development of an armor layer and surface structures (Eaton

and Church, 2009), and bedform-scale flow resistance may be related to the

development of bars and other bedforms with dimensions on the order of the

channel width.

Millar (2005) used a numerically solved rational regime model that con-

siders the effect of bank strength (relative to the erodibility of the bed) on

channel geometry in order to generate a set of regime relations similar to

the equations presented by Parker (1979). Millar’s equations were statisti-

cally derived from a large number of regime model simulations, and thus are

approximations of the full numerical regime model. His equations are:
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W ∗ = 28.1Q∗ 0.50C∗−1.12µ�−1.66

d∗ = 0.0764Q∗ 0.37C∗ 1.16µ�1.22 (24)

S = 1.98Q∗−0.33C∗−1.86µ�−0.96

where variable C∗ is the dimensionless sediment concentration (similar to

Parkers Q∗
s), and µ� is the relative bank strength (i.e., the ratio of the criti-

cal shear stress for entrainment of the bank normalized by the critical shear

stress for the bed). Millar also observed that, while S is commonly known

with a fair degree of accuracy, C∗ almost never is, so Millar used S as an inde-

pendent variable, thereby eliminating C∗ from the equations. The resulting

hydraulic geometry equations depend on the dimensionless discharge, the

channel gradient, and the relative strength of the channel banks. A char-

acteristic grain size is also implicitly included, since it is used to calculate

the non-dimensional parameters (W ∗, d∗ and Q∗), as well as the flow resis-

tance parameter used by the model (Darcy-Weisbach f): this represents as

complete a set of independent variables as can currently be specified. The

equations are:

W ∗ = 16.5Q∗ 0.70S0.60µ�−1.10 (25)

d∗ = 0.125Q∗ 0.16S−0.62µ�0.64
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Eaton and Church (2007) use a similar regime model, as well as another

numerical regime model that analyses bank strength by specifying an effec-

tive cohesion term associated with riparian vegetation (after Eaton, 2006),

to examine how well regime models are able to reproduce the observed down-

stream hydraulic geometry. They found that regime models in which relative

bank strength (µ�) was held constant were able to reproduce the hydraulic

geometry of a large gravel-bed stream (Colorado River data from Pitlick

and Cress, 2002), the anabranch dimensions of both a wandering gravel-

bed river (Fraser River data from Ellis and Church, 2005) and a wandering

sand-bed river (Columbia River data from Tabata and Hickin, 2003), as

well as the geometry of distributary channels on deltas (data from Andrén,

1994; Mikhailov, 1970). For datasets including smaller gravel bed streams

(i.e. Emmett, 1975; Andrews, 1984), Eaton and Church demonstrated that

regime models assuming a constant effective cohesion due to vegetation for

a given bank vegetation type were able to reproduce the observed hydraulic

geometry, while the constant relative bank strength models were not. Eaton

and Giles (2009) followed up this theme and demonstrated that the effect

of vegetation on hydraulic geometry declines systematically as the scale of

the system increases up to Q∗ ∼ 106, above which the effect of vegetation

becomes negligible. A similar conclusion was reached by Eaton and Millar

(2004), who found that, for gravel-bed streams in the UK (Hey and Thorne,

1986), the effect of vegetation disappeared once Q exceeded about 400 m3/s,

presumably because the rooting depth of the riparian vegetation became
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small in relation to the height of the channel banks.

A similar theoretically based model relating hydraulic geometry to veget-

ation-related bank strength was developed by Huang and Warner (1995), and

subsequently tested in the field by Huang and Nanson (1998): they concluded

that vegetation can produce as much as a three-fold change in channel width

and a two-fold change in depth.

A different approach to the problem was published by Griffiths (2003),

who attempted to theoretically define downstream hydraulic geometry re-

lations by invoking distorted Froude-scaling. His equations for mobile-bed

channels are written as scaling functions, as follows:

Pr = Q0.50
r

Rr = Q0.33
r D−0.17

r (26)

vr = Q0.17
r D0.17

r

Sr = Q−0.17
r D0.83

r

In this set of equations, all variables (i.e., Q, P , R, D, v, S) are normalized by

values from a reference location, hence the subscript, r. This model is quite

flexible, since it uses information from a reference location as a baseline, but

allows both the sediment texture and the discharge to vary downstream. An

important drawback is that it is not possible in this framework to explicitly

consider (or vary) the effect of bank strength on channel geometry, thus one
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of the important independent variables is omitted.

4. Summary and Future Research

4.1. At-a-Station Relations

At-a-station hydraulic geometry relations were first developed by Leopold

and Maddock (1953) using stream gauging rating curves at gauging cross

sections: they are site-specific relations, determined by the channel geometry

and resistance to flow, and they can drift over time (just as rating relations

tend to do) as the channel cross section changes. In large part, research on

at-a-station hydraulic geometry has remained focussed on the cross-section

scale. Most of the recent work has either attempted to improve the curve-

fitting procedures (e.g. Bates, 1990; Carling, 1991) or to apply at-a-station

hydraulic equations to the study of aquatic habitat (e.g. Hogan and Church,

1989; Jowett, 1998).

Advances in our understanding of at-a-station hydraulic geometry can

likely be made by taking advantage of recent advances in data collection

methodologies (such as digital photogrammetry, LIDAR imaging, dGPS sur-

veying, and ADCP flow measurements) and computational fluid dynamics

models in order to escape the limitations imposed by restricting attention

to a single cross section. For moderate to large rivers, it is now possible to

collect detailed three-dimensional data on the bed topography, flow structure

and sedimentology, and to numerically model the distribution of depths and

velocities for a range of discharges. It should be possible to construct at-a-
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station relations using the mean depth and velocity averaged over a reach

several channel widths in length (rather than averaged over a single cross

section), and potentially to construct additional at-a-station relations that

describe the distribution of depths and velocities within the reach. Such

relations (which could more appropriately be described as at-a-reach hy-

draulic geometry relations) would provide information that is more relevant

to fish habitat and instream engineering projects. By generating relations

that describe reach averages, some of the between-stream variation could be

reduced and it is possible that approximate general forms of the at-a-station

relations could be derived for streams with similar channel characteristics

(channel size, characteristic morphology, etc.). Furthermore, the temporal

variability of cross section based relations could be reduced, provided the

reach remained pattern-stable, since much of the temporal variability at a

cross section is associated with the normal processes of adjustment and mi-

gration of a channel at equilibrium.

4.2. Downstream Relations

Downstream hydraulic geometry equations originated as watershed-by-

watershed correlations between the channel dimensions and the mean annual

flow (Leopold and Maddock, 1953). Relatively soon thereafter, downstream

relations focussed on the correlations between geometry and a formative dis-

charge, often taken to be the bankfull flow, as well as other important vari-

ables such as the average channel gradient (e.g. Bray, 1973; Emmett, 1975;
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Charlton et al., 1978). Eventually, additional variables such as the charac-

teristic bed sediment size and riparian vegetation type were also included

in these empirical correlations (Charlton et al., 1978; Andrews, 1984; Hey

and Thorne, 1986; Lee and Julien, 2006; Parker et al., 2007). Early on,

the similarity of correlations between channel geometry and discharge for

different river systems prompted researchers to combine data from different

watersheds in order to construct relations that were purportedly representa-

tive of physiographic regions and/or stream channel types (e.g. Bray, 1973;

Charlton et al., 1978; Andrews, 1984; Hey and Thorne, 1986; Lee and Julien,

2006; Parker et al., 2007), and the watershed-specific downstream hydraulic

geometry relations have been nearly abandoned, with some notable recent

exceptions (Andrén, 1994; Pitlick and Cress, 2002; Tabata and Hickin, 2003;

Ellis and Church, 2005). The first attempts at defining a physically based

theory to predict downstream hydraulic geometry emerged in the 1970’s and

1980’s (Li et al., 1976; Parker, 1979; Yang et al., 1981; Stevens, 1989). Cur-

rently, reasonably complete theories exist for predicting channel geometry

in degrading, sediment supply-limited channels for which shear stress can

be treated as a proxy for erosion rate (Finnegan et al., 2005; Wobus et al.,

2006). For channels developed in alluvial deposits, there have been some ad-

vances in recent years, notably in attempting to incorporate some measure of

boundary erodibility into the equation (Millar and Quick, 1993; Huang and

Nanson, 1998; Millar, 2005; Eaton, 2006).

One important question that requires further research is the relation be-
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tween stream channel dynamics and reach-average channel geometry. To

tackle this issue, our ability to appropriately characterize the stream chan-

nel boundaries needs to be improved. This includes improving our ability

to describe bank vegetation and bank sedimentology, as well as our ability

to estimate the surface texture for an entire reach, rather than at a single

point. It also requires the development of improved, reach-scale models that

describe the way in which channel geometry, boundary erosion and sediment

transport interact which, as Allmendinger et al. (2005) point out, is not al-

ways straightforward. Much of the current work has focussed exclusively

on the processes of bank erosion and bank resistance, while paying little at-

tention to the processes of sediment deposition, vegetation colonization and

bank advance. This avenue of research may also improve our ability to de-

scribe the hydraulic geometry of stream in arid environments (e.g. Merritt

and Wohl, 2003) and/or streams recently impacted by extreme flood events

(e.g. Desloges and Church, 1992), if it allows us to reasonably model the

processes of stream channel disturbance and recovery.

There is also a need to link the theory of downstream hydraulic geometry

to sediment transport processes, which produce downstream changes in the

supply and texture of alluvial sediment, and ultimately influence the down-

stream changes in channel gradient. Currently, landscape evolution models

are being used to explore the issue of channel network evolution, but at

present, those models force the channel network to conform to an imposed

empirical hydraulic geometry relation, and thus cannot be used to understand
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why downstream relations have the form that they do, nor why that form

is so common. By linking reach-scale models of stream channel geometry to

network-scale models predicting the evolution of channel slope and sediment

texture (e.g. Ferguson et al., 2001), it is likely that significant advances can

be made on this front.

References

Allmendinger, N. E., Pizzuto, J. E., Potter, N., Johnson, T. E., Hession,
W. C., 2005. The influence of riparian vegetation on stream width, eastern
Pennsylvania, USA. Geological Society of America Bulletin 117 (1/2), 229–
243.

Andrén, H., 1994. Development of the Laitaure Delta, Swedish Lappland.
Tech. Rep. 88, Uppsala University, Institute of Earth Sciences, Physical
Geography.

Andrews, E. D., 1980. Effective and bankfull discharge of streams in the
Yampa River basin, Colorado and Wyoming. Journal of Hydrology 46,
311–330.

Andrews, E. D., 1982. Bank stability and channel width adjustment, East
Fork River, Wyoming. Water Resources Research 18 (4), 1184 – 1192.

Andrews, E. D., 1984. Bed material entrainment and the hydraulic geometry
of gravel-bed rivers in Colorado. Geological Society of America Bulletin
95 (3), 371–378.

Arp, C. D., Schmidt, J. C., Baker, M. A., Myers, A. K., 2007. Stream ge-
omorphology in a mountain lake district: hydraulic geometry, sediment
sources and sinks, and downstream lake effects. Earth Surface Processes
and Landforms 32, 525–543.

Ashmore, P. E., Sauks, E., 2006. Prediction of discharge from water surface
width in a braided river with implications for at-a-station hydraulic geome-
try. Water Resources Research 42 (W03406), doi: 10.1029/2005WR003993.

47



Bates, B. C., 1990. A statistical log piecewise linear model of at-a-station
hydraulic geometry. Water Resources Research 26 (1), 109–118.

Bergeron, N., Roy, A. G., 1985. Le rôle de la végétation sur al morphologie
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