Category Archives: Chemistry News

Embarassed of Asian Glow? Don’t Worry, The Future is Promising

Ever find yourself beet red after having a small drink? You’re not alone. Over one-third of East Asians and eight percent of the world population experience this awkward phenomenon; however, a solution is in the works. Just last month, researchers from Weill Cornell Medical College have solved this problem in mice, using targeted gene therapy.

What does asian glow look like? A before and after comparison. (Credits: Wikimedia Commons)

The Dangers of Asian Glow

Despite the variety of memes and jokes poking lighthearted fun at this phenomenon, asian glow comes with much dire consequences than just flushing red. The red glow is related to a deficiency in the ALDH2 enzyme, a key component in detoxifying alcohol. When you drink alcohol, the body converts this substance into acetaldehyde. Normally, acetaldehyde is then converted to the safer acetate via ALDH2; however in individuals with asian glow, this enzyme does not function normally and acetaldehyde builds up to toxic quantities. Since acetaldehyde is a cancer-causing agent, its accumulation drastically increases the risk of developing esophageal cancer by six to ten folds.

Conversion of alcohol to acetate is stopped in people with asian glow. This leads to toxic buildup of acetaldehyde. (Created with Notability)

A Glowing Solution…

Matsumura’s team reasoned if a lack of ALDH2 enzyme was the problem, maybe they could simply add it back in.

“We hypothesized that a one-time administration of a […] virus […] expressing the human ALDH2 coding sequence […] would correct the deficiency”

They tested their idea on three strains of mice: mice expressing functional ALDH2, mice lacking any ALDH2, and mice expressing a non-functional version of ALDH2. The latter two simulated the asian flush syndrome seen in humans. After introducing the mice with the ALDH2 gene and feeding them alcohol, the researchers monitored acetaldehyde levels in the blood.

Their hard-work paid off! In the two strains initially deficient for ALDH2 function, acetaldehyde levels and abnormal behavior associated with alcohol consumption lowered to near-normal levels. Furthermore, they found that one dose was enough to confer persistent and long-term protection.

From Mice to Humans: A Complicated Decision

Matsumura’s team emphasize that apart from nutritional supplements, ALDH2 deficiency has no current therapies. Although making the jump from mice to humans will be challenging, they assure the concept of virus-mediated gene therapy presents as an effective therapy. The million-dollar question is whether the risks of the glow outweigh the benefits of reduced alcohol consumption seen in affected individuals. To this Matsumura’s team maintains:

“the overall burden […] on human health, particularly […] cancer, supports […] gene therapy.”

What do you think?

 

-Kenny Lin

 

 

A Bright and Sunny Future

Climate change has been a hot topic throughout the latter half of the decade, and one of the questions is how do we create sustainable energy. This study published in October 2019 indicated that the solution may come from the development of Dye-Sensitized Solar Cells (DSSCs). DSSCs are efficient and with low manufacturing costs, they make the ideal source for sustainable energy. This research group highlights a strategy of controlled synthesis of hierarchical materials, thus providing new applications to the development of sustainable energy products.

A DSSC Retrieved from: engadget

DSSCs utilize sunlight as its source of energy, which is then converted into usuable energy. Within its compartments, it contains a light sensitizer which is connected to a semiconductor that faciliates the excitation of electrons which are able to enter a series of redox reactions. The continuous cycle of electrons through the circuit generates energy which can be used in our daily lives, or for other practical uses within industries. Huang et al., proposed to optimize the counter electrode (CE) that is present from a Pt CE, with a 2D nanosheet composed of Co-Ni-Se. This turned out to be successful as the Co-Ni-Se complex catalyzes the reduction of I3- electrolyte more effectively compared the traditional Pt CE that is typically used.

Schematic Diagram of a DSSC. Retrieved from: Research Gate Figure 2.

How can this be applied to us in everyday life?

Currently, greenhouse gases release CO2 into the atmosphere causing the earth to warm, and  subsequently acidifying the ocean affecting marine life as well. As a society, we must be more conscious of our carbon footprint as all our decisions have an environmental impact. DSSCs can be installed on the roofs of our houses to supply electricity during the day, instead of relying on sources like fossil fuels for energy. It can also be used to generate energy and stored within a battery pack for portable charging of cellular devices.

It is not difficult to find alternatives to our current problems to climate change, and one aspect more money should be invested in is the research and development of sustainable and renewable energy sources.

– Jackson Kuan

Breathe in the air… made from moon dust!

On January 17th 2020, the materials and electrical components laboratory of the European Space Research and Technology Centre (ESTEC) in Noordwijk, Netherlands announced the launch of an oxygen plant: a facility designed to extract oxygen from moon dust. Using molten salt electrolysis, oxygen gas (O2) can be extracted from oxygen-rich compounds commonly found on the lunar surface. The ability to produce oxygen on the moon will benefit future lunar endeavors as oxygen is used for breathing and rocket fuel production.

Simulated moon dust before (left) and after (right) oxygen extraction by molten salt electrolysis. The byproducts (right) are metal alloys. (Credit: Beth Lomax, University of Glasgow)

Moon dust, formally known as moon regolith, is rich in metal oxides. Metal oxides contain metals with strong bonds to one or more oxygen atoms. These oxygen atoms require a significant amount of energy to liberate in order to produce oxygen gas. In molten salt electrolysis, simulated moon regolith is placed in a metal basket with calcium chloride (CaCl2) and heated to 950oC to melt the calcium chloride. An electric current is applied to the heated sample, producing oxygen gas and metal alloys.

The idea of making the most of lunar resources has been driven by space agencies’ (such as NASA and the European Space Agency) desire to start sending humans to the moon again, but this time with the intentions of staying and setting up a lunar base. The ability to self-sufficiently produce oxygen would be a vital asset to these missions, reducing the cost and urgency of supply missions to the moon. The metal alloy byproduct may also benefit lunar missions as ESTEC researchers now work on identifying the most useful components of the byproduct and their potential applications.

 

-Mark Rubinchik

4 Elements Newly Found – the 7th Row of Periodic Table is Completed!

International Union of Pure and Applied Chemistry https://writing-rag.com/2010/four-new-words/

Have you ever curious about the abundance of elements in this world? Research groups in Japan, Russia and USA published their discovery of elements 113,115,117 and 118. On November the 28th of 2016, International Union of Pure and Applied Chemistry (IUPAC) has formally approved the name of these elements as Nihonium (Nh), Moscovium (Mc), Tennessine (Ts), and Oganesson (Og). These four elements completed the 7th row of periodic table and act as an important stepping stone toward “superstable elements” which are going to be influential in the future studies. 

Element 113, Nihonium (Nh) which called “The first element found in Asia” was found by Riken Center of Accelerator-Based Science in Japan. Three other elements of Moscovium (Mc), Tennessine (Ts), and Oganesson (Og) were discovered by Joint Institute of Nuclear Research credited to Russia and the United State. After five month of public review, IUPAC eventually added them to the 7th row of the periodic table.

These four elements were classified as “super-heavy” elements with more than 104 protons. They were synthesized by using particle accelerators to fuse one nuclei to the other. Further experiments proved the existence of these elements by reproducing the synthesis procedures. However, the life of these “man-made” elements seem to be too short for further discovery. “A particular difficulty in establishing these new elements is that they decay into unknown isotopes very fast.” Said Paul Karol, chair of the IUPAC’s joint working party. Nihonium has a half-life of 20 seconds, which was the longest among the newly found elements. Moscovium and Tennessine has even shorter half-life which is only 220 milliseconds and 78 milliseconds respectively. 

Vanderbilt University https://www.inverse.com/article/16794-tennessee-get-its-own-super-heavy-laboratory-synthesized-element-tennessine

What is purpose of discovering these elements since they disappear almost right after they are produced?

There are “islands of stabilities” which describe certain super-heavy elements that are very stable when they have certain number of protons or electrons, even though they are huge in size. Scientists believe that the next island will be in the 8th row of the periodic table. “the alleged but highly probable ‘island of stability’ at or near element 120 or perhaps 126.” Said by Paul Karol. These “Island of Stabilities” can stay from minutes to years which will be meaningful to study their chemistry.  

Although the life of these newly found elements are way too short to have a practical use, they are the sign of getting closer to the “Island of Stability” of “super-stable” heavy elements. Those “super-stable” radioactive elements are worthy to study and could have a lot of industrial applications. For example, they might be useful as a stockpile of nuclear energy to maintain the national safety. The discovery of these elements gave hope to scientists and encourage them to further discover the ultimate limit of periodic table. Hopefully they will be able to discover some stable super-heavy elements that are influential and have significant practical uses soon. The study of new elements would eventually be the breakthrough point of modern chemistry!

 

You will never know, what happens in an organic chemistry lab.

“Organic synthesis”, seems like a mysterious area to many people outside of a chemistry degree. In many amateurs’ eyes, in an organic chemistry lab, some “wizards” are using “magic power” to create incredible things. However, organic chemistry is very “touchable”, not only many things that we are using are synthesized by chemists, but also some chemists in labs are synthesizing funny things which can add fun to our life.

In April 2003, an article published by Dr. James Tour at Rice University described the procedure of synthesis a “NanoKid”, as well as “NanoProfessionals” based on the NanoKid.

Synthesis and Modifications of the NanoKid

A NanoKid is formed of two parts: an upper body and a lower body. The upper and lower bodies were synthesized in the first several steps, and the last step involved the coupling of the top and bottom portions. This was accomplished by using a Pd/Cu-catalyst through a Sonogashira Reaction.

Synthesis of a NanoKid (Copyright: The Journal of Organic Chemistry)

After Dr. Tour’s team synthesized the NanoKid successfully, he changed the “head” of the NanoKid to make NanoProfessionals, such as NanoChef, NanoAthlete and NanoScholar. Furthermore, by hydrogenating the triple bond on the “waist” to a single bond, and coupling the “hand” of NanoKids, the research team got NanoBalletDancers and NanoKid-Polymer respectively.

Electron cloud-based space-filling model of NanoProfessionals (Copyright: James M. Tour)

Other relevant synthesis projects

Other than NanoKids, the research group of Dr. Tour constructed NanoCars by carbon-based molecules and won the first prize in the NanoCar Race in 2017.

Three models of possible conformations of NanoCars under the scanning tunneling microscopy (STM) (Copyright: Organic Letters)

Summary of the NanoCar Race results. (Copyright: Nature)

Recently, many organic chemists use carbon atoms as building blocks to build molecules with unusual names. Such as “Broken Windowpane” which has a molecular formula of C8H12 and looks like a broken window, “Housane” which looks like a house and “Churchane” which looks like a church.

Is it a waste of taxpayers’ money?

Chemists have already synthesized the NanoKid, NanoCar and Broken Windowpane, and in the future, chemists might build more interesting Nano-things. These research outcomes are very delighted, but some people might ask: Is it a waste of money? What is the meaning of these chemicals?
To synthesize a Broken Windowpane, chemists need to overcome an extraordinary intramolecular tension, to give birth to a NanoKid, researchers had to design and control the reaction accurately. “Beyond the molecular-sized domain, there is no conceivable entity upon which to tailor architectures that could have programmed cohesive interactions between the individual building blocks. It is at this size region that synthetic chemists have been inherently captivated; however, their fascination is rarely shared by the layperson.” Dr. Tour said. The Broken Windowpane might be adapted for more fantastic molecules, and the NanoCar might be used to deliver targeted drugs to a certain part of the body one day in the future. These molecules show that chemists can make whatever they want, and how magic chemistry is.

Image

New Method of Water Purification can Clean Out Mercury and Other Harmful Metals

Carbon nanostructures have the potential to be used as a new form of water purification. A team of researches out of the Indian Institute of Technology Bombay have shown the potential to clean out Mercury, Cadmium, and Chromium ions safely from drinking water.

The study, which came out at the end of December 2019, shows that three-dimensional nanostructured carbon florets (NCFs) are tightly packed enough to inhibit heavy metal ions such as Hg2+ and Cd2+ from passing through, while allowing the much smaller H2O molecules to pass though easily. This material is particularly good at adsorbing out multiple heavy metal ions simultaneously, making it uniquely qualified for practical use in water filtration systems.

Ease of Implementation

The most interesting aspect of this discovery how easy it is to use. No energy is required to enable these filters, the water source simply passes through and between 80% to 90% of the ions are instantly trapped.  The study further shows that NCFs are easy to reclaim after use and have long lifespans. These structures, while being nanostructures, act very simply as a filter for harmful meta ions.

Furthermore, these NCFS work on a range of pH 2-13, with no significant drop across this large range. This means it can perform well on most all samples of water, and effectively decontaminate water safely. NCFs are also synthesized in a very simple fashion, requiring only minor modifications to an already common nanomaterial known as DFNS (dendritic fibrous nanosilica). 

While there is certainly room for expansion into purification of other heavy metals that pollute water supplies, such as lead, this is a very promising step forwards!

-Griffin Bare

 

Engineered bacteria is capable of feeding through atmospheric CO2

A study led by a team of researchers from the Weizmann Institute of Science in Israel has confirmed a recently developed fully autotrophic E.coli strain whose generated biomass is solely derived from a greenhouse gas.

E. coli bacteria cells. Source: Livescience

CO2 accumulates in our atmosphere and it is commonly used by plants to generate sugars for their sustainable growth.This promising strain could be used as a renewable food source and energy storage.

Hacking Metabolism

An originally heterotrophic bacterium was successfully converted into an autotrophic organism. Scientists rewired their core metabolic pathway, introduced heterologous (non-native) genes and Formate as an accessible electron donor, providing such organism with the required enzymatic machinery to effectively convert inorganic carbon into biomass under physiological conditions. Furthermore, the carbon source of nearly all biomass produced was confirmed to atmospheric CO2 with isotopic labeling techniques.

Summary of photosynthetic pathway from an engineered bacterium cell. Source: Cell

Photosynthesis is a process common to plants and some microorganisms, and it is the first step in the food chain. Evolutionarily speaking, this transformation is considered a major accomplishment since these two metabolic pathways are very distinct. Autotrophs and heterotrophs diverged millions of years ago, although some organisms with both metabolic routes are known to exist.

Summary of transformation. Source: technologyandus.com

 

Next Steps

Regulation of CO2 in our atmosphere has become one of the most important challenges in today’s era.  We are constantly looking for sustainable ways of producing food, fuel and biochemicals, and this study presents a new yet promising approach to reduced carbon emitting food sources with a broad spectrum of fields in which this technology can be applied.

There is great diversity in the compounds that can be synthesized through this process and its deep understanding may have a large impact in the future of a new carbon neutral world.

This finding also denotes the flexibility of metabolic processes to support life as mentioned by the authors:

– “This rapid trophic mode transformation showcases the outstanding plasticity of metabolism and demonstrates the power of the framework described here for designing and implementing the rewiring of cellular metabolism.”

-Aron Engelhard

These Ingredients in Sunscreen Might Promote Breast Cancer

Breast cancer is the most diagnosed cancer with an estimated diagnosis of 331,530 women and 2670 men this year in the US alone. Cancer is a incredibly dangerous illness, caused by the unfiltered division of cells in the body. It is predicted that this year 41,760 women and 500 men will die of breast cancer in the US. Research by the University of Massachusetts Amherst published on January 15 2020 found that benzophenone-3 (BP-3) and propylparaben (PP) can increase the chances of breast cancer.

Because of this, the estimations may now have to take into consideration the dangers of common everyday items that include the chemicals BP-3 and PP. BP-3 is commonly found in sunscreen as it helps to block harmful UV light that may cause damage to the skin. PP is a chemical widely used in the cosmetics industry and can be found in items such as makeup, hair products and moisturisers.

Previous research into the effects of BP-3 had shown that only extremely high concentrations could promote cancer growth. Since these concentrations were far beyond the normal levels of exposure to women, there was no cause for concern. However, this new research shows that cells containing oestrogen receptors, important for regulating gene activity, require only a fraction of the cancer promoting concentration of BP-3 to cause damage to the DNA of the cell. “There may be a risk at lower levels than we would have previously understood,” says professor of Veterinary & animal Sciences at the University of Massachusetts Amherst, science director of Pioneer Valley Institute, and co-director of Rays of Hope Centre for Breast Cancer Research, Dr. Joseph Jerry.

The study shows that DNA damage only occurs in cells containing oestrogen receptors, and that all other cells show no adverse effects.

It might be time to take a look at the ingredients in your everyday items!

 

– Chantell Jansz