Tag Archives: biochemistry

Biosynthetic Pathway Found to Synthesize Anaerobic Antibiotics!

Fig 1. Image of Azomycin. source

Scientists found the biosynthetic pathway to the Nitroimidazole Antibiotic Azomycin. A steppingstone towards the revolution of anaerobic bacterial infection treatments.

Scientists from the University of British Columbia found the biosynthetic pathway to the Nitroimidazole antibiotic Azomycin. The enzymatic mechanism from L-Arginine to Nitroimidazole has now been proved and present to the public. Their formal paper was published online on July 17th, 2019. Nitroimidazole is an essential component for the modern antibiotics, it is crucial to know its synthetic pathway for further pharmaceutical studies. The result of their study set the stage for further development of important anaerobic antibiotic Azomycin.

What is it? Why do we need to know about this?

Nitroimidazole is an essential antibiotic specifically to treat anaerobic bacterial infections. They are widely used to treat diseases such as Amoebiasis, Parasitic infections, skin infections, diarrhea and so on. The low redox potential of anaerobic bacteria cells allowed nitroimidazole to act as the electron sink and form the radical species. The resultant radical species would induce the bacteria cells’ death by damaging their DNA. Antibiotic is the most powerful “weapon” to fight against bacterial infections. However, according to the World Health Organization, there are more than 700000 people die every year due to antibiotic resistance. Despite the several decade’s usages of Nitroimidazole antibiotics, the drug resistance of it still remains low relatively. Thus, Nitroimidazole antibiotics are increasingly used to treat multi-drug resistant bacteria as well.

 

Previous research established that L-Arginine is converted to azomycin by 2-aminioimidazole. They determined that the intermediate of the reaction is 4-hydroxy-2-ketoarginine (2). Furthermore, they also observed the accumulation of pyruvate(3) side products and 2-aminoimidazole(5) from the intermediate(2). However, the actual enzymatic synthetic pathway has not been determined detailly yet. Jason and Katherine in the research group determined that PLP-dependent enzymes, RohP,RohR,RohQ and RohS plays esstential role in the catalytic pathway of the reaction. Researchers examined the in vitro activity of RohP, RohR, RohQ and RohS. They put in these enzymes separately and stepwise to different reactants. For example, in order to test whether RohR could catalyze a retro-aldol cleavage of 2 into 3 and guanidinoacetaldehyde (4), they added purified RohR instead of RohP. Then according to activity analysis and also the mass spectrum, the result shows that RohP yields a bigger portion of 2.

Fig 2. Reaction scheme from L-Arginine to Nitroimidazole. Source

Antibiotics are the most powerful “weapon” to kill bacteria in modern pharmaceutical studies. As early as in the 20th century, the observation of penicillin saved millions of people injured in the World War. Yet, the enormous benefits of antibiotics cause the consequences of drug-resistance. Azomycin, consider as a low-resistance antibiotic, it is crucial to understand its enzymatic reaction mechanism. Reaction mechanism allows scientist to have a more detail interpretation of the synthesis. It is crucial to find the catalytic cycle of the reaction, in order to allow scientists to develop and derive further study.

The study done by Jason and Katherine at the University of British Columbia provides the public with a steppingstone in future nitroimidazole anti-biotics study. Their study expanded people’s knowledge of the biosynthetic pathway to nitro-compounds. It also makes bacteria engineering to produce nitroaromatic compounds possible. This study will open the new door in enzymatic synthesis and biochemistry synthesis.

Cited article:

Hedges, J. B.; Ryan, K. S. In Vitro Reconstitution of the Biosynthetic Pathway to the Nitroimidazole Antibiotic Azomycin. Angewandte Chemie International Edition 201958 (34), 11647–11651.

Bacteria: Friend or Foe?

Did you know that not all bacteria is bad? In some cases, they cause diarrhea, stomach ulcers, and even intestinal diseases. However, what if I told you scientists have found a way to manufacture antibiotics that are used to treat these bacterial infections from bacteria themselves?

Scanning Electron Microscope view of bacteria. Retrieved from: NYTIMES

Dr. Jason Hedges and Dr. Katherine Ryan of the University of British Columbia took a look into finding new enzymatic pathways for synthesizing nitroimidazole, which is a component in the antibiotic, azomycin.

So what is the point of this whole process and why do we even want to use bacteria to synthesize antibiotics?

By finding more ways to develop antibiotics from bacteria, this improves our knowledge on biosynthetic pathways. This is beneficial not only for the scientific community, but for the public as well. As bacteria develop resistances to antibiotics over time, the discovery of new antibiotics would be able to treat more patients suffering from bacterial infections.

How is this done?

Now how could something that sounds so complex be done? Let us take a look at their process step-by-step.

Like all scientists do, background research was performed to see how previous scientists went about finding ways to develop antibiotics from bacteria. To do so, a bioinformatics search was performed. Bioinformatics is essentially ‘googling’ information about a certain topic, but in this case, they would be using a scientific database such as the National Centre for Biotechnology Information (NCBI).

A cryptic gene cluster was found in the bacterial strain Streptomyces cattleya. This along with various enzymes were the main points of interest. Their goal was to use L-arginine; a fundamental building block of proteins, and find a way to convert this into nitroimizadole (a component of the antibiotic, azomycin

Theoretically, a blueprint on how L-arginine would be converted to nitroimidazole was developed. However, experiments must be conducted to see if the pathway would work in real life, and not just on paper.

Figure 1 – Biosynthetic pathway towards nitroimidazole. Retrieved from: Hedges and Ryan, 2019

Through experimentation, the pathway as shown in figure 1 was deemed to have synthesized nitroimidazole successfully. The next step was to determine whether or not azomycin could be synthesized from Streptomyces cattleya. Unfortunately, they were unsuccessful in detecting any levels of nitroimidazole in the bacteria samples. They concluded that potentially a different molecule had been synthesized, or that this specific gene cluster is silent (inactivate).

Although Hedges and Ryan were unable to find a definitive pathway to synthesizing azomycin utilizing bacteria, their work was able to disprove aa few reaction schemes in the scientific community, allowing for further research to be conducted.

Science is not always about success. In science, you must fail in order to succeed. Their work provides a stepping stone into further scientific research such a finding other biosynthetic pathways in the synthesis of other antibiotics.

 

Literature Cited:

Hedges, J. B.; Ryan, K. S. In Vitro Reconstitution of the Biosynthetic Pathway to the Nitroimidazole Antibiotic Azomycin. Angewandte Chemie International Edition 201958 (34), 11647–11651.

-Jackson Kuan

Revised: Embarassed of Asian Glow? Don’t Worry, The Future is Promising

Ever find yourself beet red after one small drink? You’re not alone! Over one-third of East Asians and eight percent of the world population experience this awkward phenomenon; however, a solution is in the works. Just last month, researchers from Weill Cornell Medical College have solved this problem by experimenting with targeted gene therapy on mice.

What does asian glow look like? A before and after comparison. (Credits: Wikimedia Commons)

The Dangers of Asian Glow

Apart from causing embarrassment, asian glow comes with more serious consequences than just flushing red. The red glow is caused by a deficiency in the ALDH2 enzyme, a key component in detoxifying alcohol. When you drink alcohol, your body converts the alcohol into acetaldehyde. Normally, acetaldehyde is further converted to a safer compound by ALDH2; however in individuals with asian glow, ALDH2 does not function, causing acetaldehyde to build up. Since acetaldehyde is a cancer-causing agent, its accumulation drastically increases the risk of developing esophageal cancer by six to ten folds.

Conversion of alcohol to acetate is stopped in people with asian glow. This leads to toxic buildup of acetaldehyde. (Credits: Me – created with Notability)

A Glowing Solution…

Matsumura’s team reasoned if a lack of ALDH2 enzyme was the problem, maybe they could simply add it back in.

“We hypothesized that a one-time administration of a […] virus […] expressing the human ALDH2 coding sequence […] would correct the deficiency”

They tested their idea on three strains of mice: mice with functional ALDH2, mice lacking ALDH2, and mice with a non-functional version of ALDH2. The latter two simulated the asian flush syndrome seen in humans. After introducing all the mice with the ALDH2 gene and feeding them alcohol, the researchers carefully monitored acetaldehyde levels in the blood.

Their hard-work paid off! In the two strains deficient for ALDH2 function, acetaldehyde levels and abnormal behavior associated with alcohol consumption were back to near-normal levels. Furthermore, they found that one dose was enough to confer persistent and long-term protection.

From Mice to Humans: A Complicated Decision

Matsumura’s team emphasize that a long-lasting treatment for ALDH2 deficiency currently does not exist. Although making the jump from mice to humans will be challenging, they assure that virus-mediated gene therapy shows the most promise in becoming an effective therapy. The million-dollar question is whether the risks of the glow outweigh the benefits of reduced alcohol consumption seen in affected individuals. To this Matsumura’s team say:

“the overall burden […] on human health, particularly […] cancer, supports […] gene therapy.”

What do you think?

-Kenny Lin

These Ingredients in Sunscreen Might Promote Breast Cancer

Breast cancer is the most diagnosed cancer with an estimated diagnosis of 331,530 women and 2670 men this year in the US alone. Research by the University of Massachusetts Amherst published on January 15 2020 observed that chemicals in everyday items can increase the chances of breast cancer in women.

Cancer is a dangerous illness, caused by the uncontrolled division of cells in the body. It is predicted that this year 41,760 women and 500 men will die of breast cancer in the US.  These estimations may now have to take into consideration th

Chemical Structure of Benzophenone-3 aka Oxybenzone Source: Wikipedia

e dangers of sunscreen and cosmetics, including makeup, hair products, and moisturizers.These everyday products are known to contain the chemicals benzophenone-3 (BP-3) and propylparaben (PP).

The study indicates that previous research into the effects of BP-3 had shown that only extremely high concentrations could promote cancer growth. Since these concentrations were far beyond the n

Chemical Structure of Propylparaben Source: Wikipedia

ormal levels of exposure to women, there was no cause for concern.

However, the study showed that mice exposed to oils containing BP-3 and PP had an increase in cancer. The results suggest that BP-3 and PP effect cells that contain oestrogen receptors. High levels of oestrogen has previously been linked to an increase in breast cancer.  The exposure to BP-3 and PP at only a fraction of the cancer promoting concentration was shown to increase DNA damage by causing structures known as R-Loops.

Dr Joesph Jerry of UMass Amherst, science director of Pioneer Valley Institute, and co-director of Rays of Hope Centre for Breast Cancer. Source: UMass Amherst from EurekAlert!

Based on the results, Dr Joseph Jerry, the professor of Veterinary & Animal Sciences at the University of Massachusetts Amherst warns that, “There may be a risk at lower levels than we would have previously understood,”.

The study shows that DNA damage only occurs in cells containing oestrogen receptors, and that all other cells show no adverse effects.

It might be time to take a look at the ingredients in your everyday items!

– Chantell Jansz

Embarassed of Asian Glow? Don’t Worry, The Future is Promising

Ever find yourself beet red after having a small drink? You’re not alone. Over one-third of East Asians and eight percent of the world population experience this awkward phenomenon; however, a solution is in the works. Just last month, researchers from Weill Cornell Medical College have solved this problem in mice, using targeted gene therapy.

What does asian glow look like? A before and after comparison. (Credits: Wikimedia Commons)

The Dangers of Asian Glow

Despite the variety of memes and jokes poking lighthearted fun at this phenomenon, asian glow comes with much dire consequences than just flushing red. The red glow is related to a deficiency in the ALDH2 enzyme, a key component in detoxifying alcohol. When you drink alcohol, the body converts this substance into acetaldehyde. Normally, acetaldehyde is then converted to the safer acetate via ALDH2; however in individuals with asian glow, this enzyme does not function normally and acetaldehyde builds up to toxic quantities. Since acetaldehyde is a cancer-causing agent, its accumulation drastically increases the risk of developing esophageal cancer by six to ten folds.

Conversion of alcohol to acetate is stopped in people with asian glow. This leads to toxic buildup of acetaldehyde. (Created with Notability)

A Glowing Solution…

Matsumura’s team reasoned if a lack of ALDH2 enzyme was the problem, maybe they could simply add it back in.

“We hypothesized that a one-time administration of a […] virus […] expressing the human ALDH2 coding sequence […] would correct the deficiency”

They tested their idea on three strains of mice: mice expressing functional ALDH2, mice lacking any ALDH2, and mice expressing a non-functional version of ALDH2. The latter two simulated the asian flush syndrome seen in humans. After introducing the mice with the ALDH2 gene and feeding them alcohol, the researchers monitored acetaldehyde levels in the blood.

Their hard-work paid off! In the two strains initially deficient for ALDH2 function, acetaldehyde levels and abnormal behavior associated with alcohol consumption lowered to near-normal levels. Furthermore, they found that one dose was enough to confer persistent and long-term protection.

From Mice to Humans: A Complicated Decision

Matsumura’s team emphasize that apart from nutritional supplements, ALDH2 deficiency has no current therapies. Although making the jump from mice to humans will be challenging, they assure the concept of virus-mediated gene therapy presents as an effective therapy. The million-dollar question is whether the risks of the glow outweigh the benefits of reduced alcohol consumption seen in affected individuals. To this Matsumura’s team maintains:

“the overall burden […] on human health, particularly […] cancer, supports […] gene therapy.”

What do you think?

 

-Kenny Lin

 

 

These Ingredients in Sunscreen Might Promote Breast Cancer

Breast cancer is the most diagnosed cancer with an estimated diagnosis of 331,530 women and 2670 men this year in the US alone. Cancer is a incredibly dangerous illness, caused by the unfiltered division of cells in the body. It is predicted that this year 41,760 women and 500 men will die of breast cancer in the US. Research by the University of Massachusetts Amherst published on January 15 2020 found that benzophenone-3 (BP-3) and propylparaben (PP) can increase the chances of breast cancer.

Because of this, the estimations may now have to take into consideration the dangers of common everyday items that include the chemicals BP-3 and PP. BP-3 is commonly found in sunscreen as it helps to block harmful UV light that may cause damage to the skin. PP is a chemical widely used in the cosmetics industry and can be found in items such as makeup, hair products and moisturisers.

Previous research into the effects of BP-3 had shown that only extremely high concentrations could promote cancer growth. Since these concentrations were far beyond the normal levels of exposure to women, there was no cause for concern. However, this new research shows that cells containing oestrogen receptors, important for regulating gene activity, require only a fraction of the cancer promoting concentration of BP-3 to cause damage to the DNA of the cell. “There may be a risk at lower levels than we would have previously understood,” says professor of Veterinary & animal Sciences at the University of Massachusetts Amherst, science director of Pioneer Valley Institute, and co-director of Rays of Hope Centre for Breast Cancer Research, Dr. Joseph Jerry.

The study shows that DNA damage only occurs in cells containing oestrogen receptors, and that all other cells show no adverse effects.

It might be time to take a look at the ingredients in your everyday items!

 

– Chantell Jansz