Tag Archives: Metals

Image

Revised: New Method of Water Purification can Clean Out Mercury and Other Harmful Metals

Carbon nanostructures have the potential to be used as a new form of water purification. A team of researches out of the Indian Institute of Technology Bombay have shown the potential to clean out Mercury, Cadmium, and Chromium ions safely from drinking water.

 

The study, which came out at the end of December 2019, shows that three-dimensional nanostructured carbon florets (NCFs) are tightly packed enough to inhibit heavy metal ions such as Hg2+ and Cd2+ form passing through, while allowing the much smaller H2O molecules to pass through easily. This material is particularly good at adsorbing out multiple heavy metal ions simultaneously, making it uniquely qualified for practical use in water filtration systems.

Effectiveness of NCFs

Source: Moronshing et al. (adapted)

As you can see in the above image, the NCFs plug the narrow pathway for the contaminated water to reach the receiving flask. As the water molecules pass through, the pollutants are almost entirely blocked. The chart bellow specifies that as much as 93% of the heavy metals ion are removed from the solution, simply by passing through this NCF filter.

NCF Adsorption Efficiency

Source: Moronshing et al. (adapted)

Ease of Implementation

The most interesting aspect of this discovery is how easy it is to use. No energy is required to enable these filters, the water source simply passes through, and between 80% to 90% of the ions are instantly trapped.  The study further shows that NCFs are easy to reclaim after use and have long lifespans. These structures act very simply as a filter for harmful meta ions; a microscopic filter for atoms.

Synthesis of NCFs

Source: Moronshing et al. (adapted)

Furthermore, these NCFS work on a range of pH 2-13, with no significant drop across this large range. This means it can perform well on most all samples of water, and effectively decontaminate water safely. NCFs are also synthesized in a very simple fashion, requiring only minor modifications to an already common nanomaterial known as DFNS (dendritic fibrous nanosilica).

While there is certainly room for expansion into purification of other heavy metals that pollute water supplies, such as lead, this is a very promising step forwards!

-Griffin Bare

Revised: Breathe in the air… made from moon dust!

On January 17th 2020, the materials and electrical components laboratory of the European Space Research and Technology Centre (ESTEC) in Noordwijk, Netherlands announced the launch of an oxygen plant: a facility designed to extract oxygen from moon dust.

Using molten salt electrolysis, oxygen gas (O2) can be extracted from oxygen-rich compounds commonly found on the lunar surface. The ability to produce oxygen on the moon will benefit future lunar endeavors as oxygen is used for breathing and rocket fuel production.

Simulated moon dust before (left) and after (right) oxygen extraction by molten salt electrolysis. The byproducts (right) are metal alloys. (From ESA)

Moon dust, formally known as moon regolith, is rich in metal oxides. Metal oxides contain metals with strong bonds to one or more oxygen atoms. These oxygen atoms require a significant amount of energy to liberate in order to produce oxygen gas.

In molten salt electrolysis (see figure below), simulated moon regolith is placed in a metal basket with calcium chloride (CaCl2) and heated to 950oC to melt the calcium chloride. The molten calcium chloride is an electrolyte that makes the mixture highly conductive. An electric current is applied to the heated sample, reducing metal oxides to metals and oxygen dianions at the cathode. The oxygen dianions are oxidized to oxygen gas at the anode.

Molten salt electrolysis setup (Modified from Lomax et al., 2020)

The idea of making the most of lunar resources has been driven by space agencies’ (such as NASA and the European Space Agency) desire to start sending humans to the moon again, but this time with the intentions of staying and setting up a lunar base. The ability to self-sufficiently produce oxygen would be a vital asset to these missions, reducing the cost and urgency of supply missions to the moon.

The metal alloy byproduct may also benefit lunar missions as ESTEC researchers now work on identifying the most useful components of the byproduct and their potential applications.

 

-Mark Rubinchik

Breathe in the air… made from moon dust!

On January 17th 2020, the materials and electrical components laboratory of the European Space Research and Technology Centre (ESTEC) in Noordwijk, Netherlands announced the launch of an oxygen plant: a facility designed to extract oxygen from moon dust. Using molten salt electrolysis, oxygen gas (O2) can be extracted from oxygen-rich compounds commonly found on the lunar surface. The ability to produce oxygen on the moon will benefit future lunar endeavors as oxygen is used for breathing and rocket fuel production.

Simulated moon dust before (left) and after (right) oxygen extraction by molten salt electrolysis. The byproducts (right) are metal alloys. (Credit: Beth Lomax, University of Glasgow)

Moon dust, formally known as moon regolith, is rich in metal oxides. Metal oxides contain metals with strong bonds to one or more oxygen atoms. These oxygen atoms require a significant amount of energy to liberate in order to produce oxygen gas. In molten salt electrolysis, simulated moon regolith is placed in a metal basket with calcium chloride (CaCl2) and heated to 950oC to melt the calcium chloride. An electric current is applied to the heated sample, producing oxygen gas and metal alloys.

The idea of making the most of lunar resources has been driven by space agencies’ (such as NASA and the European Space Agency) desire to start sending humans to the moon again, but this time with the intentions of staying and setting up a lunar base. The ability to self-sufficiently produce oxygen would be a vital asset to these missions, reducing the cost and urgency of supply missions to the moon. The metal alloy byproduct may also benefit lunar missions as ESTEC researchers now work on identifying the most useful components of the byproduct and their potential applications.

 

-Mark Rubinchik