Tag Archives: Nanomaterials

Image

Revised: New Method of Water Purification can Clean Out Mercury and Other Harmful Metals

Carbon nanostructures have the potential to be used as a new form of water purification. A team of researches out of the Indian Institute of Technology Bombay have shown the potential to clean out Mercury, Cadmium, and Chromium ions safely from drinking water.

 

The study, which came out at the end of December 2019, shows that three-dimensional nanostructured carbon florets (NCFs) are tightly packed enough to inhibit heavy metal ions such as Hg2+ and Cd2+ form passing through, while allowing the much smaller H2O molecules to pass through easily. This material is particularly good at adsorbing out multiple heavy metal ions simultaneously, making it uniquely qualified for practical use in water filtration systems.

Effectiveness of NCFs

Source: Moronshing et al. (adapted)

As you can see in the above image, the NCFs plug the narrow pathway for the contaminated water to reach the receiving flask. As the water molecules pass through, the pollutants are almost entirely blocked. The chart bellow specifies that as much as 93% of the heavy metals ion are removed from the solution, simply by passing through this NCF filter.

NCF Adsorption Efficiency

Source: Moronshing et al. (adapted)

Ease of Implementation

The most interesting aspect of this discovery is how easy it is to use. No energy is required to enable these filters, the water source simply passes through, and between 80% to 90% of the ions are instantly trapped.  The study further shows that NCFs are easy to reclaim after use and have long lifespans. These structures act very simply as a filter for harmful meta ions; a microscopic filter for atoms.

Synthesis of NCFs

Source: Moronshing et al. (adapted)

Furthermore, these NCFS work on a range of pH 2-13, with no significant drop across this large range. This means it can perform well on most all samples of water, and effectively decontaminate water safely. NCFs are also synthesized in a very simple fashion, requiring only minor modifications to an already common nanomaterial known as DFNS (dendritic fibrous nanosilica).

While there is certainly room for expansion into purification of other heavy metals that pollute water supplies, such as lead, this is a very promising step forwards!

-Griffin Bare

You will never know, what happens in an organic chemistry lab.

“Organic synthesis”, seems like a mysterious area to many people without a chemistry degree. Generally, organic chemists synthesize molecules with academic values or commercial values, like drugs and catalysts. However, there are some chemists like to create some fun molecules, which are usually thought to be useless.

Dr. James Tour at Rice University is a famous chemist in building “useless” molecules, such as “NanoKid” and “NanoCar”. In April 2003, he published an article of synthesis “NanoKid”, as well as “NanoProfessionals” based on the NanoKid.

Synthesis and Modifications of the NanoKid

A NanoKid is formed by two parts: an upper body and a lower body. The upper and lower bodies were connected by a Pd/Cu-catalyst through a Sonogashira Reaction. Meanwhile, the “head” of a NanoKid can be changed by changing the ketal part of the NanoKid. Dr. James Tour used a variety of diols to make NanoProfessionals, such as NanoChef, NanoAthlete and NanoScholar. Furthermore, by hydrogenating the triple bond on the “waist” to a single bond, and coupling “hands” of NanoKids, the research team got NanoBalletDancers and NanoKid-Polymer respectively.

Electron cloud-based space-filling model of NanoProfessionals (Copyright: James M. Tour)

NanoCar

Other than NanoKids, the research group of Dr. Tour also built NanoCars by carbon-based molecules and won the first prize in the NanoCar Race in 2017.

Three models of possible conformations of NanoCars under the scanning tunneling microscopy (STM) (Copyright: Organic Letters)

Summary of the NanoCar Race results. (Copyright: Nature)

Recently, many organic chemists use carbon atoms as building blocks to build molecules with unusual names. Such as “Broken Windowpane” which has a molecular formula of C8H12 and looks like a broken window, “Housane” which looks like a house and “Churchane” which looks like a church.

Is it a waste of taxpayers’ money?

Chemists have already synthesized the NanoKid, NanoCar and Broken Windowpane. In the future, chemists might build more interesting Nano-things. These research outcomes are very delighted, but some people might ask: Is it a waste of money? What is the meaning of these chemicals?
To synthesize a Broken Windowpane, chemists need to overcome an extraordinary intramolecular tension, to give birth to a NanoKid, researchers had to design and control the reaction accurately. “Beyond the molecular-sized domain, there is no conceivable entity upon which to tailor architectures that could have programmed cohesive interactions between the individual building blocks. It is at this size region that synthetic chemists have been inherently captivated; however, their fascination is rarely shared by the layperson.” Dr. Tour said. The Broken Windowpane might be adapted for more fantastic molecules, and the NanoCar might be used to deliver targeted drugs to a certain part of the body one day in the future. These molecules show that chemists can make whatever they want, and how magic chemistry is.

Image

New Method of Water Purification can Clean Out Mercury and Other Harmful Metals

Carbon nanostructures have the potential to be used as a new form of water purification. A team of researches out of the Indian Institute of Technology Bombay have shown the potential to clean out Mercury, Cadmium, and Chromium ions safely from drinking water.

The study, which came out at the end of December 2019, shows that three-dimensional nanostructured carbon florets (NCFs) are tightly packed enough to inhibit heavy metal ions such as Hg2+ and Cd2+ from passing through, while allowing the much smaller H2O molecules to pass though easily. This material is particularly good at adsorbing out multiple heavy metal ions simultaneously, making it uniquely qualified for practical use in water filtration systems.

Ease of Implementation

The most interesting aspect of this discovery how easy it is to use. No energy is required to enable these filters, the water source simply passes through and between 80% to 90% of the ions are instantly trapped.  The study further shows that NCFs are easy to reclaim after use and have long lifespans. These structures, while being nanostructures, act very simply as a filter for harmful meta ions.

Furthermore, these NCFS work on a range of pH 2-13, with no significant drop across this large range. This means it can perform well on most all samples of water, and effectively decontaminate water safely. NCFs are also synthesized in a very simple fashion, requiring only minor modifications to an already common nanomaterial known as DFNS (dendritic fibrous nanosilica). 

While there is certainly room for expansion into purification of other heavy metals that pollute water supplies, such as lead, this is a very promising step forwards!

-Griffin Bare