Category Archives: Science in the News

Discovery of a New Particle may change Physics

A recent article on CBC reveals a shocking discovery that could change the world that we know today. Scientists at the Fermi National Accelerator Laboratory in Illinois found a new particle that is different from the ones that we are familiar with. This new particle was discovered through the help of the Tevatron particle accelerator. The accelerator data showed an unusually high peak, which after analysis, was determined to be a new particle.

The collision detector found at Fermilab

Particle accelerators try to discover or uncover particles by accelerating them in a chamber. The particles are accelerated near the speed of light, and through these high-speed collisions, scientists hope to gain data that might reveal new particles. The unusual high peak from the accelerator’s data led to the creation of a new particle, called the W boson, and two cones of particles, called hadronic jets.

The new particle created ripples in the scientific community due to the fact that they do not conform to the structure predicted by the Standard Model. Physicists are boggled by this, and this new particle could in fact lead to more research.  However, the scientists at Fermilab are cautious with their findings. They are still waiting for results from Large Hadron Collider and see if the scientists there could reproduce the peak using identical parameters. Also, they are trying to eliminate the fact that this peak could have been achieved by accident – that this wasn’t a ‘fluke.’

If the same results are achieved, the world as we know it might be a little bit more different.

Scientist Clarifies ‘Sexy’ News Story from the Telegraph

To wrap up SCIE 300, I have found a recent sensationalized news story, which involves blogging and commenting online!

Water Sampling Probe used during the GOS. Photo: J. Craig Venter Institute

To analyze the DNA of microbes in the oceans, scientists at the J. Craig Venter Institute ventured on the Global Ocean Sampling (GOS) Expedition. In fact, one data collection voyage involved navigating the oceans for over two years! The expeditions have produced an immense data set of DNA sequences.

In search of unusual genes, researchers found new DNA sequences in the GOS data set that were not present in known organisms or viruses. Currently, the tree of life has three major branches or divisions: bacteria, eukarya, and archaea. These sequences formed groups that branched outside of known divisions in the tree of life.  Researchers proposed that the new groups, or lineages, emerged from four possibilities. The two most likely explanations are that the lineages are from unknown viruses or a fourth major branch on the tree of life. Dr. Jonathan Eisen, from U.C. Davis and one of the paper’s authors, believes the former is more probable.

Interestingly, Dr. Eisen and his colleagues decided to forgo a formal university press release for their paper. Instead, Dr. Eisen wrote his own ‘press release’ on his blog, The Tree of Life. He feared that the results of the paper would become overstated in the press, through communication, or even in his own blog post.

Newsy.com video coverage of the research:

YouTube Preview Image

The research was able to make waves in the media and the Telegraph in the UK published an article online with the sexy headline, “Scientist finds a whole new ‘domain’ of life”. Richard Alleyne, the author of the news article, may not have written the headline, but the body of the article did contain inaccuracies. For example, Alleyne had written that the technique used to analyze the DNA was named by the researchers themselves, which was not the case. This was actually the first time the technique was used on a large scale basis.

Dr. Eisen was quick to respond to the misleading headline and inaccuracies within the news article. In the article’s comments section, he noted three of the main errors and provided corrections. Dr. Eisen clarified that a new domain of life is only one of the possible explanations for the findings and not a conclusive result. There have not been any corrections made to the news article yet, but I am curious to see how this will play out!

o The Global Ocean Sampling (GOS) Expedition is a venture by scientists at the J. Craig Venter Institute to analyze the DNA of microbes across the oceans. In fact, one data collection voyage involved navigating the oceans for over two years! The expeditions have produced an immense dataset of DNA sequences.

Brain Structures May Predict Political Views

With the Canadian election race in full swing,  some people know exactly who they are going to vote for, and others are unsure. Each of us have our own biases and opinions about the big issues like healthcare, defense, and the economy.

Picture from Google Images

A group of scientists from the University College London just published a study in Current Biology that may show why “liberals are open to new experiences and can cope with conflicting information,” and why “conservatives are more sensitive to threat or anxiety in the face of uncertainty. ” (Quotes from Sciencedaily.com)

The team of researchers looked at the different sizes of these two structures called the anterior cingulate cortex and the amygdala (click the name to find out more information about each structure from Wikipedia). This team suspected that there might be a structural difference in the brain that accounts for these differences. And this is indeed what they found. People with larger anterior cingulate cortexes tended to have more liberal views. Whereas people with larger amygdalas tended to have conservative views.

But there is not enough evidence to conclude that only these structures account for the political differences. There were too many uncontrollable factors to take into account, such as life experience, family history, also what kind of environment the subject was raised in. And people also have the ability to change their views over time.

Ryota Kanai of the University College London concluded in the article that “It’s very unlikely that actual political orientation is directly encoded in these brain regions,” and “more work is needed to determine how these brain structures mediate the formation of political attitude.”

Side note:

Picture from Google Images

Vote Compass is a free online survey where just click the answers that are closest to your opinions and it will tell you which political party you are closest to. I think it’s pretty cool, to check it out click on Vote Compass to go there now.

DON’T FORGET TO VOTE!

BC killer whales can’t hear each other!

I spent much of 2010/2011 working on a research project so thought that I would use this ultimate SCIE300 blog post to tell you all about it.

Last September, myself and four others in UBC Environmental Science were put on team and instructed to research whatever environmental science topic we wanted. We were all broadly interested in researching some sort of ecological impact of the Gateway Program, BC’s massive plan for highway and port expansions. We spent first semester narrowing in on a more specific area. Eventually, we landed our focus on the impacts of increasing commercial shipping traffic on the Southern Resident killer whales (SRKW). This population is designated as endangered by the Species at Risk Act and has been in decline over the past several decades.

Photo: Minette Layne on Flickr

This semester, we went into a research paper-reading frenzy on everything and anything to do with killer whales, ships, and killer whales and ships in order to find a manageable gap in the understanding of commercial ship impacts on the SRKW we could work to fill. We soon found that the influence of commercial shipping sound in the SRKW critical habitat — area identified as especially important for the well-being of this species — is little understood.

Also at around this time, a lawsuit led by several environmental groups against the Department of Fisheries and Oceans (DFO) was in the midst of unfolding. Team Enviro had taken DFO to court for failing to protect the SRKW critical habitat (which DFO is legally obliged to protect), and in December 2010, the court ruled against DFO. Noise pollution — along with food availability and toxic pollution — were among the key areas DFO was found to be failing to address. So, knowing that DFO might be considering doing a better job of safe-gaurding the critical habitat, we wanted to conduct research that could inform recommendations to lessen noise impacts on the SRKW.

We got to work using GIS analysis to map out areas of sound influence in the SRKW habitat, identifying spots where the killer whales’ ability to communicate was compromised. In addition, we mapped out noise pollution scenarios under different ship speed limits to see whether the noise level decreased significantly.

In the end, we found that noise pollution is omnipresent in the SRKW critical habitat; the whales are almost never freed from some sort of interference in their communication calls. Additionally, we found that no realistic speed limit reduces noise significantly. What does this mean for the SRKW? Mostly, our research reiterates that DFO has done a poor job in protecting the home of this endangered species. However, we believe that future research into alternate shipping routes and identification of specific months or times of day for shipping that avoid critical killer whale feeding and breeding times and areas could lead to successful SRKW protection.

Our poster we presented to the EOSC faculty. You should be able to read it by clicking on it.

See our blog for more info on our project:-)