Tag Archives: Neuroscience

Do humans have superpowers? -Magnetoreception

What if you had a superpower? What would you want it to be? The ability to fly? Superhuman strength? Well, what if the ability was to tell which direction the sun would rise from without actually seeing the rise, or just finding your way back to camp when you get lost in the woods? Researchers from Caltech and the University of Tokyo have found evidence that humans can subconsciously detect changes in the Earth’s magnetic fields.

Although this study only suggests that the effects of changes in magnetic fields are detectable by our subconscious brain, they feel that this could open up the window for new research. Prof. Shinsuke Shimo, in a YouTube video with science communicator Derek Muller says, “This is just the first step to make sure that it’s not theoretically impossible that our ancestors might have utilized this ability for their navigation.”

 

Derek Muller from Veritasium takes the test of magnetoreception

The ability of an organism to detect magnetic fields to identify directions, altitude or location is known as Magnetoreception. Have you ever wondered how pigeons are always able to find their way home? Or how birds know which direction is south when they migrate? Evidence of magnetoreception has even been found in dogs that will usually sit in North-South direction while they poop.

Prof. Shimo also believes that this ability may potentially reside in modern humans. Not so long ago, Prof. Joseph Kirschvink of Caltech claimed that he had discovered magnetoreception in humans. A few years later, Kirschvink, along with Shimo and co have found evidence suggesting humans may potentially posses a superpower.

It is important to remember that as of this moment, humans are only capable to detecting changes in magnetic fields subconsciously in a state with no distractions from the surroundings. However, if we were able to study and bring this ability to the consciousness, we would not only be gaining a superpower but also making inroads into bringing other parts of subconsciousness into consciousness.

If you wish to learn more about magnetoreception, you can watch this short video by Science Magazine.

 

 

 

Maybe my mom was right…

Ragged, calloused fingers danced across the damp ivory keys of the slightly out-of-tune instrument. A nocturne echoed, howling across the room, as the fear of failure kept his teary eyes glued upon the page. A metaphorical chain shackling him to the traditional device of torture twisted deep into the flesh of his aching wrists. A slave to the music. Broken, tired, and hungry. Those dark and terrible years would haunt him for the rest of his life.

As soon as I could walk, I was forced to play the piano. The daunting task of rehearsing the same piece for hours enraged my heart as a child, and when I asked my mom “why?” she always replied with “you’ll appreciate it when you’re older.” After 14 years of slaving away on that wretched instrument, along with having symptoms of carpal tunnel syndrome, I realized, maybe she was right. I was privileged to have an opportunity that she hadn’t had when she grew up and it allowed me to appreciate music further as well as learn other instruments with ease. But beyond this, I questioned, “in what other ways did I benefit from playing an instrument?” As a kid, I remember overhearing how playing piano had some correlation between being better at math, and although this seemed crazy, it led me to ponder the effects that playing instruments had on the brain.

 

Piano Keys By Elliot Billings 

How does playing an instrument affect the brain?

Today, the study of the brain is conducted by monitoring participants as they complete tasks such as reading or mathematical equations. Neuroscientists have found, that in doing such specific areas of the brain were activated. When monitoring the activation as participants listened to music, they found multiple areas across the brain firing all at once which differed from other activities.  Moreover, when playing a musical instrument nearly the entire brain was stimulated.

How does this transfer over to things outside of music?

Just as working out makes a person stronger, practicing an instrument is found to strengthen the brain functions used. For example, since studies show that there are common mechanisms used when playing an instrument and reading, it can be said that music can be used to promote child literacy. Similar suggestions from other studies can also be said for playing an instrument with linguistics and mathematics. These benefits, even when done as a child, were retained all the way into adulthood.  Furthermore, the act of playing an instrument utilizes both sides of the brain. In doing so, musicians are found to have increased volume and activity in the brain’s corpus callosum, which is what links the two sides together. This means that the brain has an easier time sending messages from one side to another, which could be beneficial as each side focuses on different processes. The TED-ED video below goes into further detail on the topic. 

The Corpus Callosum by Henry Vandyke Carter

So, in the unfortunate case that I end up with a child, I’ll probably get them to learn an instrument at a young age, and if they ask why, I’ll tell them “You’ll appreciate it when you’re older.”

-Nelson Bulaun

 

 

 

Can Video Games Help You Learn?

Canada currently has the third largest video game industry in the world. As a leader in the industry, it comes to no surprise that over 19 million Canadians identify as gamers. In doing so, as the societal interest in video games increases, so does the interest to research the effects of gaming, especially on students.

Child playing Fortnite. Image from Alex Haney, Unsplash

What does past research show?

Past research has shown that gaming by young people can lead them to develop a variety of detrimental behaviours. Children who played violent games had a higher likelihood of being more antisocial, more aggressive, and less empathetic than their non-gaming peers. Other studies have shown that excessive gaming can have a similar effect on a child’s brain as drugs and alcohol. This effect would lead to poor school performance and a higher likelihood of developing other addictions later in life. These results highlight the issues behind unhealthy gaming behaviour that goes beyond the limits of a hobby. While these results are very important to consider, there may be some benefits to gaming.

Is there any current research on gaming?

A recent study done by Ruhr-Universität Bochum compared the learning of gamers and non-gamers. Of the 34 participants, 17 volunteers did not play games regularly, and the other 17 played for 15+ hours a week. Both groups completed a weather prediction task while being recorded by an MRI.

In the task, participants were shown a combination of cue cards with varying symbols. Based on the cards shown, they had to guess whether that particular combination predicted sun or rain. With each guess, participants were given feedback on whether they were correct or not. This feedback would lead to learning of the combinations by all participants, but at varying rates.

Diagram of the brain showing the hippocampus, amygdala and cerebellum. Image from picturesboss.com

What are the effects of gaming on learning?

The results showed that gamers were significantly better at learning the card combinations with a faster learning curve and more correct answers. While the non-gamers did show learning, they were much slower in comparison. Also, the MRI scans showed that gamers had a stronger activation response in the hippocampus and surrounding regions of the brain. All of which are associated with learning and memory.

Based on these results, researchers were able to conclude that gaming helped individuals in probability-based tasks, which are activities that requires individuals to learn rules as they go. Gamers displayed a heightened ability to analyze and adapt to a new situation. This adaptation showed that players had a much better categorization performance, where they are able to generate and classify new information quickly. Thus illustrating that video games helped enhance learning performance rather than deter it.

While excessive gaming can have detrimental effects, there also are some beneficial factors. Video games, when done in moderation, allows individuals to learn more rapidly by training their hippocampus to be quick and effective. Video games create a challenging environment that pushes players to problem-solve and think creatively to achieve their goals. Looking ahead, researchers believe that further studies can be done to see whether games can help older people reduce the effects of memory loss.

– Arrthy Thayaparan

Help! I can’t stop eating!

A child eating pizza. Image from Wikimedia Commons

One slice of pizza turns into five boxes of pizza and twenty hours later… you’re still eating! Imagine an insatiable hunger and a love for food turned deadly. When eating becomes your worst enemy, Prader-Willi Syndrome may be the culprit.

What is Prader-Willi Syndrome?

Prader-Willi Syndrome (PWS) is a rare genetic disorder in which an individual feels hungry all the time. So much to the point where they are found constantly eating, and can continue eating even after they’re full. These individuals can literally eat to the point of death.

PWS was first described in 1956 by Swiss doctors Andrea Prader, Alexis Labhart, and Heinrich Willi. Anyone can develop PWS, and it was found that this disorder affects nearly 1 in every 15,000 births. As a result, PWS is one of the leading causes of childhood obesity.

Symptoms of a Deadly Appetite

The most common symptom of PWS is chronic hunger. Other symptoms can include: poor muscle tone during infancy, early-onset obesity, limited growth, delayed motor and verbal skills, behaviour and mental disorders, and curvature of the spine.

A 15-year-old child with typical PWS facial features. Note the presence of mild truncal obesity. Image from Wikimedia Commons

How does this happen?

PWS is a genetic disorder, which means that children inherit this disorder from their parents. Specifically, from an abnormality in a chromosome that comes from the father. This abnormality arises when a part of the gene is missing or malfunctioning. When this occurs, the hypothalamus (the part of the brain that controls hunger and thirst and releases hormones that promote growth) stops working which results in an inability to regulate food intake.

Is there a cure?

Unfortunately, there is no known cure for PWS. In fact, most of the research to date has only been targeted towards developing treatments for the disorder. For example, doctors may prescribe a growth hormone to treat PWS that not only increases height, but also decreases body fat, increases muscle mass, improves weight distribution, increases stamina, and increases bone mineral density.

Ultimately, the inability to regulate food intake remains one of the biggest obstacles that prevent individuals with PWS from living independently. There is still no effective medication that aids in regulating appetite. Nevertheless, those with PWS can still live a long and fulfilling life with the right guidance and support, as seen with Katie in the video below. Her documentary on living life with PWS gives us a better insight into the disorder, and presents a new meaning to the saying “you are what you eat”:

Documentary of Katie, a child living with PWS. Video from Youtube.

-Christina Rayos

New Wireless Pacemaker Offers Treatment for Parkinson’s Disease

In Canada, over 10,000 people currently live with Parkinson’s disease with an additional 6,600 new cases being diagnosed every year. The disease is caused by a loss of dopamine producing nerve cells. Without dopamine, the nerves are unable to control body movements efficiently. As Parkinson’s advances, movements such as walking and talking become heavily affected. Due to the complexity of this disease, the reason behind the nerve damage is very difficult to determine. Thus, researchers are focusing on ways to alleviate patients’ difficulty in movement. Most recently, UC Berkeley scientists have discovered a new neurostimulator, WAND, that could change the course of neurological disorder treatment, especially Parkinson’s.

What is a neurostimulator?

The most effective method of Parkinson’s treatment is the implantation of a neurostimulator device to the brain. This is very similar to a cardiac pacemaker, since it is able to maintain appropriate circuits in the brain. The dysfunctional areas of the brain are targeted by electrical signals that block any irregular brain waves.

What is Deep Brain Stimulation?

The most used neurostimulator is the deep brain stimulation (DBS) device. As seen in the video below, the DBS electrode is implanted near target areas, with wires passing under the skin down to the shoulders and connected to the neurostimulator in the chest. The patient after recovery is provided with a remote or magnet that allows for the stimulator to be turned on and off at home. While this treatment has been seen to be mostly effective, the surgery process and control of the device can be very strenuous, especially considering the advanced age of most Parkinson’s patients. Therefore, UC Berkeley researchers have developed a new neurostimulator, called WAND, that is smaller and much more advanced in capabilities.

Video of How Deep Brain Stimulation Works. Courtesy of The Wall Street Journal

What is WAND?

WAND or wireless artifact-free neuromodulation device, contains wireless and autonomous capabilities. This means that the device once trained to recognize signs of tremors or seizures, is able to adjust the stimulation parameters and apply electrical signals on its own. WAND is also able to record brain wave activity while applying the treatment. These recordings would allow doctors to see how the patient is reacting during and after the treatment. This is a large advancement from the typical DBS treatments which either stop recording or record away from the target region.

Newly Developed WAND Device. Source: Rikky Muller, UC Berkeley

Has WAND been tested?

To test its effectivity, researchers applied the device in a study that taught subjects to use a joystick to move a cursor. WAND was able to detect the neural signatures that preceded the joystick motion, and delay it by applying electrical stimulation. Thus, showing that the closed-loop system and neurological recordings worked more effectively in a demonstration done by previous DBS devices.

In all, WAND is a brilliant new technology that is cost-effective, time-effective, and saves patient’s the worry of having to apply their own electrical stimulations. The device is able to treat and record simultaneously, which builds an up-to-date record of treatment. While there is still much research needed to look at potential side effects, this technology gives hopes to Parkinson’s patients of returning to their former, healthy selves.

          Arrthy Thayaparan

New Wireless Pacemaker Offers Treatment for Parkinson’s Disease

In Canada, over 10,000 people are currently living with Parkinson’s disease with an additional 6,600 new cases being diagnosed every year. The disease is caused by a loss of dopamine producing nerve cells. Without this vital neurotransmitter the nerves are unable to control body movements efficiently. As Parkinson’s advances, movements such as walking and talking become heavily affected. Due to the complexity of this disease, the reason behind the nerve damage is very difficult to determine. Thus, researchers are focusing on ways to alleviate patients’ difficulty in movement. Most recently, UC Berkeley scientists have discovered a new neurostimulator, WAND, that could change the course of neurological disorder treatment, especially Parkinson’s.

The most effective method of Parkinson’s treatment is the implantation of a neurostimulator device to the brain. This is very similar to a cardiac pacemaker; in which it is able to maintain appropriate circuits in the brain. The dysfunctional areas of the brain are targeted by electrical signals that block any irregular brain waves.

The most used neurostimulator is the deep brain stimulation (DBS) device. As seen in the video below, the DBS electrode is implanted near target areas, with wires passing under the skin down to the shoulders and connected to the neurostimulator in the chest. The patient after recovery is provided with a remote or magnet that allows for the stimulator to be turned on and off at home. While this treatment has been seen to be mostly effective, the surgery process and control of the device can be very strenuous, especially considering the advanced age of most Parkinson’s patients. Therefore, UC Berkeley researchers have developed a new neurostimulator, called WAND, that is smaller and much more advanced in capabilities.

WAND or wireless artifact-free neuromodulation device, contains wireless and autonomous capabilities. This means that the device once trained to recognize signs of tremors or seizures, is able to adjust the stimulation parameters and apply electrical signals on its own. WAND is also able to record brain wave activity while applying the treatment. These recordings would allow doctors to see how the patient is reacting during and after the treatment. This is a large advancement from the typical DBS treatments which either stop recording or record away from the target region.

Newly Developed WAND Device. Source: Rikky Muller, UC Berkeley

To test its effectivity, researchers applied the device in a study that taught subjects to use a joystick to move a cursor. WAND was able to detect the neural signatures that preceded the joystick motion, and delay it by applying electrical stimulation. Thus, showing that the closed-loop system and neurological recordings worked more effectively in a demonstration done by previous DBS devices.

In all, WAND is a brilliant new technology that is cost-effective, time-effective, and saves patient’s the worry of having to apply their own electrical stimulations. The device is able to treat and record simultaneously, which builds an up-to-date record of treatment. While there is still much research needed to look at potential side effects, this technology gives hopes to Parkinson’s patients of returning to their former, healthy selves.

          Arrthy Thayaparan