
Authenticating People and Machines
over
Insecure Networks

EECE 571B “Computer Security”

Konstantin Beznosov

authenticating people

objective

! authenticate Alice to Bob over insecure network

3

Alice Bob

Password=“sesame” Password=“sesame”

The Internet

simplistic approach (attempt #1)

4

A
lic

e
B

ob
“Alice”, x

“Ok”

general challenge-response protocol

5

A
lic

e
B

ob

“Alice”, nonceAlice

challengeBob

responseAlice

responseAlice = f(challengeBob, password)

How can it be attacked? offline dictionary attack on eavesdropped messages!

password password

What else? plaintext-equivalent!

desirable properties
! mutual authentication
! session key
! resistant to dictionary attacks
! server compromise does not make it easy to find

password
! password compromise does not lead to revealing past

session keys (forward secrecy)
! session key compromise does not lead to password

compromise
! does not take long

6

another view of PAKE
“a means of “bootstraping” a common cryptographic key

from the (essentially) minimal set up assumption of a low-
entropy, shared secret”

7

attempt #2

8

A
lic

e
B

ob

“Alice”, Epassword(K)

EK(Terminal type:)

K -- random session key generated by Alice

How can it be attacked?

password password

What else?

offline dictionary attack on eavesdropped message from Bob!

replay attacks

Encrypted Key Exchange (EKE)

plain text for encryption with password P must look random

A
lic

e

B
ob

“Alice”, P{EA}

P{EA{KAB}}

KAB{CA}

KAB{CA, CB}

KAB{CB}

more on EKE
! assumptions

! encryption must not leak any useful information
! for all P’, P’-1{P{EA}} must appear a valid public key

! strengthening EKE
! what if a session key KAB has been recovered?
! SAB = f(SA, SB)

10

EKE with Diffie-Hellman
A

lic
e

B
ob

“Alice”, P{ga mod p}

(KAB = gab mod p)

KAB{CA, CB}

KAB{CA}

P{gb mod p}, CB

Why are ga and gb encrypted?

desirable properties
! mutual authentication
! session key
! resistant to dictionary attacks
! server compromise does not make it easy to find

password
! password compromise does not lead to revealing past

session keys (forward secrecy)
! session key compromise does not lead to password

compromise
! does not take long

12

EKE properties
✓mutual authentication
✓session key
✓resistant to dictionary attacks
- server compromise does not make it easy to find

password
- password compromise does not lead to revealing past

session keys (forward secrecy)
✓session key compromise does not lead to password

compromise
- does not take long

- public key crypto is expensive

13

Asymmetric Key Exchange (AKE)
 &
Secure Remote Password (SRP)
Protocol

AKE/SRP features and idea
! generalized form of a class of verifier-based protocols

! no plaintext-equivalence

! does not encrypt protocol flows

idea
each party

! computes a secret
! applies one-way function to it to generate a verifier
! sends its verifier to the other party
! both parties generate session key from secrets and

verifies

15

SRP notation

SRP protocol
To establish a password P with Bob, Alice picks a random
salt s, and computes x and v. Provides Bob with s and v.

Alice Bob

v = gx

S = gab+bux

SRP demo
http://srp.stanford.edu/demo/

18

optimizing SRP message rounds

19

original optimized one-way authentication optimized

SRP properties
✓mutual authentication
✓session key
✓resistant to dictionary attacks
✓server compromise does not make it easy to find

password
✓password compromise does not lead to revealing past

session keys (forward secrecy)
✓session key compromise does not lead to password

compromise
✓does not take long

- public key crypto is expensive

20

Decentralized User Authentication in
a Global File System

architecture

23

ACL-
enabled

File
Server

Local
Auth

Server

Remote
Auth

Servers

SFS
Clients

Secure Network
Connections

Agents

Figure 1: Overview of the SFS authentication architecture

User authentication is a multi-step operation. It begins when the
SFS agent, a process running on the user’s machine, signs an au-
thentication request on behalf of the user with his private key (see
Figure 1). The user sends this request to the file server (for exam-
ple), which passes it, as opaque data, on to the local authentication
server. The authentication server verifies the signature on the re-
quest and issues credentials to the user based on the contents of
its database. The authentication server then hands these credentials
back to the file server, which is free to interpret them as it sees fit.
Subsequent communication by the user over the same connection
receives the same credentials but does not require interaction with
the authentication server.
In the current implementation, the local authentication server

runs on the same machine as the file server. This detail, however,
is not fundamental to the design of the system. Several file servers
could share a single “local” authentication server (e.g., on a LAN)
by naming it with a self-certifying hostname. Currently, file servers
can share an authentication database through replication, restricting
updates to a single primary server.

3.1 Authentication server
The SFS authentication server serves two main functions. First, it
provides a generic user authentication service to other SFS servers.
Second, it provides an interface for users to manage the authentica-
tion name space.
Users name remote authentication servers, like other SFS servers,

using self-certifying hostnames. They name remote users and
groups that are defined on authentication servers in other adminis-
trative realms using the same idea. Because remote user and group
names contain self-certifying hostnames, they are sufficient to es-
tablish a connection to the appropriate authentication server and
retrieve the user or group’s definition. By naming a remote user
or group, users explicitly trust the remote authentication server to
define that user or group.
The main challenge in designing the SFS authentication server is

how to retrieve remote user, and particularly, remote group defini-
tions. For example, remote authentication servers might be unavail-
able due to a network partition. Remotely defined groups might
themselves include other groups. The nesting could be several lev-
els deep, involving many authentication servers, and possibly cy-
cles.

3.1.1 Interface
The authentication server maintains a database of users and groups
in SFS. To a first approximation, this database is analogous to
Unix’s /etc/passwd and /etc/group. The authentication
server presents an RPC interface which supports three basic op-
erations:

• LOGIN allows an SFS server to obtain credentials for a user
given an authentication request. LOGIN is the main step of
the user authentication process described above.

• QUERY allows a user (or another authentication server) to
query the authentication database for a particular record (e.g.,
user or group) based on some record-specific key (e.g., name
or public key).

• UPDATE allows a user to modify records in the authentica-
tion database. Access control is based on the record type and
the user requesting the update.

LOGIN, by definition, does not require a user-authenticated con-
nection. QUERY can be authenticated or unauthenticated; when
replying to an unauthenticated QUERY, the authentication server
can hide portions of the user or group record (see Section 3.2.3).
UPDATE, however, does require an authenticated connection, so
the authentication server can perform access control to the database.
If a user wants to modify a record using UPDATE, he first con-

nects directly to the authentication server as he would connect to
any other SFS server. The authentication server generates creden-
tials for the user by effectively calling LOGIN on itself. Finally,
the user issues UPDATE over the user-authenticated connection.

3.1.2 User records
Each user record in the authentication database represents an SFS
user. Often, SFS user records correspond to Unix user entries in
/etc/passwd, and system administrators can configure SFS to
allow users to register themselves with the authentication server
initially using their Unix passwords. SFS user records contain the
following fields: 1

1When referring to field names, the convention throughout this
paper will be to use a sans-serif typeface.

62

Goals
• Authenticate users to access the file system
• Support remote administrative domains
• Use only local information at access time
• Avoid certificates

Why not certificates?
• Complicated infrastructure
• Certificate chain hard to compute (e.g., SDSI)
• Or inflexible trust structure (e.g., VeriSign)
• Overkill for a file system?

SFS Servers
• Each server has a public key
• Key part of the name (“self-certifying”)

– mit.edu,anb726muxau6phtk3zu3nq4n463mwn9a
• Use key to authenticate server and set up a secure

connection
– Connection provides confidentiality & integrity

Self-Certifying Names
• Public keys are explicit

– Always together with the name

• No PKI necessary
– Avoids organizational and technical issues

• Keys are obtained out-of-band
– Perhaps falling back on people

Authentication Servers
• One server per administrative domain

– Identified by self-certifying hostname

• Authenticate users
– Unix passwords, public keys, SRP, …

• Manage local names and groups
• Export user and group records to remote servers

Groups
• Defined within an administrative domain
• Has a list of members and a list of owners
• Each user may define their own groups

– E.g. alice.friends

• Members/owners can be remote or local

Group members

Member type Example

Local user U=beznosov

Local group G=beznosov.571B-students

Remote user U=billg@microsoft.com,wxyweq…

Remote group G=faculty@cs.ubc.ca,r34qduk…

Public key P=d43dft5tr50lkxsdre42…

Group members
• Local users & groups

– As defined by the authentication server

• Public key hashes
– Allow ad-hoc users
– Protect privacy

• Remote users & groups
– Retrieved from remote servers
– Authenticity protected by self-certifying name

membership graph example

32

Level 0

Level 1

Level 2

Level 3

g1

u1 p1 g3

p2 p3 p4

g2

u2 g4

u3

p5

Figure 3: Membership graph for local groups g1 and g2

group’s membership list, but it implies that the local server must
trust those owners.

3.2 Resolving group membership
The credentials that the authentication server issues may include a
list of groups, but these groups must be local (defined on the au-
thentication server itself). Any remote groups (or users) of interest
to this authentication server must exist as members of some local
group. The server resolves each local group into a set of public keys
by fetching all of the remote users and groups that the local group
contains.
Even though this decision puts some restrictions on the user (e.g.,

by disallowing remote principals to appear directly on ACLs), it has
two important advantages. First, the authentication server knows
exactly which remote users and groups to fetch (i.e., those which
are members of local groups). Second, the authentication server
fetches only users and groups that are necessary to issue credentials
to a user.
Conceptually, the local groups on a particular authentication

server are part of a membership graph, which defines the relation-
ship between those local groups, their members, their members’
members, and so forth. Each node represents one of the three types
of names that can appear in a group’s Members list: a public key
hash, a user name, or a group name. The direction of the edges
indicates membership. For example, an edge from user U to group
G means that U is a member of G. An edge from public key hash P
to remote user U means that U is the user with public key hash
P (i.e., public key hashes are “members” of a remote user). A
multi-hop path in the membership graph means that the member-
ship relationship involves one or more levels of indirection (i.e., it
involves remote users or groups that are defined on other authenti-
cation servers).
Figure 3 shows the membership graph for two local groups g1

and g2. Local users and groups are shaded gray, remote ones are
not. User u1, public key hash p1, and group g3 are all members of
group g1. Group g3, user u2 and group g4 are members of group
g2. User u1 is a remote user with public key hash p2; the edge from
p2 to u1 indicates this relationship (the same relationship exists be-
tween u3 and p5). User u2, however, is a local user (it resides on
the same authentication server as g1 and g2), so it has no in edge.
Groups g4 and g2 are members of each other and form a cycle in
the membership graph.

To issue credentials for a user, the authentication server must de-
termine the local groups to which that user belongs. The server
generates this group list by traversing the membership graph start-
ing at the nodes which represent that user: a public key hash and
possibly also a local user name (if the user has an account on the
authentication server). The authentication server avoids cycles by
never visiting the same node twice. When it reaches a local group,
it adds that group to the user’s credentials. The user with public key
hash p5 would receive credentials containing only the local group
g2. His credentials would not include group g1 because the mem-
bership graph does not contain a path from p5 to g1.
To construct the membership graph, the authentication server

first constructs a complementary graph called the containment
graph. The containment graph consists of the same nodes, but its
edges have the opposite direction. In the containment graph, an
edge from group G to user U means that G contains, or lists, U as
one of its members; similarly, a remote user node “contains” the
node for that user’s public key hash. Nodes representing a public
key hash or a local user do not have any out edges. Nodes represent-
ing a remote user have exactly one out edge to the public key hash
node for that user. Nodes representing a group (local or remote)
have an out edge for each name appearing in the group’s Members
list.
The containment graph has one or more levels. Level 0 consists

only of local groups. Level 1 consists of those names that appear
directly in the definitions of the local groups. In general, Level n
consists of all entities that are n hops away from the local groups
at Level 0. The containment graph can have cycles when a group
contains itself through zero or more other groups.
Given the containment graph, constructing the membership

graph and traversing it in order to issue credentials is straightfor-
ward and efficient. Resolving group membership thus reduces to
the problem of constructing the containment graph given a set of lo-
cal groups. Accurately constructing the containment graph is chal-
lenging for the following reasons:

1. Groups can name remote users and groups. Constructing the
containment graph would be easy if all of the user and group
names were local. When membership lists contain remote
user and group names, constructing the graph might require
contacting a large number of remote authentication servers.
Because the graph has dependencies (i.e., fetching a group
at Level n requires first fetching that group’s parent at Level

64

Group Caching
• Group definitions may be distributed on many servers
• Each authentication server resolves and caches entire

group membership
• Cache ensures all necessary information is locally

available at time of access
– Though it may be out of date

Resolving Membership
• Expand group names
• Query remote servers for group & user definitions
• Recursively query any new remote names
• Cache updated every hour
• Use version numbers to send deltas

Problems
• Freshness

– Eventual consistency
– Use out-of-date data for an hour
– Longer if server unavailable

• Revocation
– Easy to revoke users (with a delay of 1 hour)
– Hard to revoke server keys

Scalability
• All relevant group members cached on local server
• students@berkeley.edu may be large
• registered-voters@gov.bc.ca wouldn’t work
– It would work with certificates

• Limit members to 1,000,000 to prevent DOS
• Most sharing groups are small
–571B-students
–ece-registered_students

ACLs
• Each file and directory has an ACL
–Stored in first 512 bytes

• Lists local users and groups and access rights
–Read, write, modify ACL

• Remote names and public keys have to be
indirected through a group
–Save on space
–Easier to change membership

p=bkfce6jdbmdbzfbct36qgvmpfwzs8exu
u=alice
u=bob@cs.cmu.edu,fr2eisz3fifttrtvawhnygzk5k5jidiv
g=alice.friends
g=faculty@stanford.edu,7yxnw38ths99hfpqnibfbdv3wqxqj8ap

Figure 2: Example user and group names in SFS. Both bob and faculty are remote names, which include self-certifying hostnames.

User Record:

User Name Public Key
ID Privileges
GID SRP Information
Version Audit String

User Name, ID andGID are analogous to their Unix counterparts.
Version is a monotonically increasing number indicating how many
updates have been made to the user record. Privileges is a text field
describing any additional privileges the user has (e.g., “admin” or
“groupquota”). SRP Information is an optional field for users who
want to use the Secure Remote Password protocol [35]. The Audit
String is a text field indicating who last updated this user record
and when. Users can update their Public Keys and SRP Information
stored on the authentication server with the UPDATE RPC.

3.1.3 Group records
Each group record in the authentication database represents an SFS
group. Administrators can optionally configure the authentication
server to treat Unix groups (in /etc/group) as read-only SFS
groups. SFS groups contain the following fields:

Group Record:
Group Name Owners
ID Members
Version Audit String

Groups have a name Group Name. SFS groups created by
regular users have names that are prefixed by the name of the
user. For example, the user alice can create groups such as
alice.friends and alice.colleagues. Users with ad-
ministrative privileges can create groups without this naming re-
striction. Each group also has a unique ID.
SFS groups have a list of Members and a list of Owners; the

group’s Owners are allowed to make changes to the group. The
elements of these lists are SFS user and group names which are
described below. Users who create personal groups implicitly
own those groups (e.g., alice is always considered an owner of
alice.friends).
Administrators can set up per-user quotas that limit the number

of groups a particular user can create, or they can disable group
creation and updates completely. Per-user quotas are stored in the
Privileges field of the user record.

3.1.4 Naming users and groups
The authentication server understands the following types of
names, which can appear on the Owners and Members lists in
group records:

• Public key hashes
• User names
• Group names

Public key hashes are ASCII-armored SHA-1 hashes [13] of
users’ public keys. They are the most basic and direct way to name
an SFS user.
User names refer to SFS user records defined either in the lo-

cal authentication database or on a remote authentication server.
Local user names are simply the User Name field of the record.
Remote user names consist of the User Name field plus the self-
certifying hostname of the authentication server that maintains the
user record.
Similarly, group names refer to group records defined either

in the local authentication database or on a remote authentication
server. Local group names are the Group Name field of the record,
and remote group names are the Group Name field plus the self-
certifying hostname of the remote authentication server.
To distinguish between public keys, users, and groups, Own-

ers and Members lists use the following two-character prefixes for
each element: u=, g=, and p=. The table in Figure 2 shows sev-
eral examples of these three types of names. (In the last example,
g=faculty@... is not prefixed by a user name because it was
created by a user with administrative privileges.)
Public key hashes are important for two reasons. First, they pro-

vide a universal way to name users who are not associated with
an authentication server (e.g., a cable modem user). Second, they
can provide a degree of privacy by obfuscating the user names on a
group membership list. Such lists of user names might be private; if
the user names correspond to email addresses, they might be abused
to send spam.
User names are also important because they provide a level of

indirection. Naming an authentication server (and its public key)
instead of naming the user’s public key provides a single point of
update should the user want to change his key or need to revoke
it. Authentication server self-certifying hostnames might appear
in more than one membership list, but they typically change less
frequently than user keys.
With respect to group names, indirection through an authentica-

tion server can provide a simple form of delegation. The last exam-
ple in Figure 2 shows how a user might name all of the faculty at
Stanford. The membership list for that group can be maintained by
administrators at Stanford, and SFS users who reference that group
do not need to be concerned with keeping it up-to-date. Because
all five types of names listed above can also appear on Owners
lists, groups with shared ownership are possible. For example, a
group might contain the members of a conference program com-
mittee. The group’s owners are its two co-chairs. The owners and
the members of this group all belong to different administrative or-
ganizations, but the SFS authentication server provides a unified
way to name each of them.
Naming users and groups with self-certifying hostnames dele-

gates trust to the remote authentication server. Delegation is im-
portant because it allows the remote group’s owners to maintain the

63

user record in ACL

p=bkfce6jdbmdbzfbct36qgvmpfwzs8exu
u=alice
u=bob@cs.cmu.edu,fr2eisz3fifttrtvawhnygzk5k5jidiv
g=alice.friends
g=faculty@stanford.edu,7yxnw38ths99hfpqnibfbdv3wqxqj8ap

Figure 2: Example user and group names in SFS. Both bob and faculty are remote names, which include self-certifying hostnames.

User Record:

User Name Public Key
ID Privileges
GID SRP Information
Version Audit String

User Name, ID andGID are analogous to their Unix counterparts.
Version is a monotonically increasing number indicating how many
updates have been made to the user record. Privileges is a text field
describing any additional privileges the user has (e.g., “admin” or
“groupquota”). SRP Information is an optional field for users who
want to use the Secure Remote Password protocol [35]. The Audit
String is a text field indicating who last updated this user record
and when. Users can update their Public Keys and SRP Information
stored on the authentication server with the UPDATE RPC.

3.1.3 Group records
Each group record in the authentication database represents an SFS
group. Administrators can optionally configure the authentication
server to treat Unix groups (in /etc/group) as read-only SFS
groups. SFS groups contain the following fields:

Group Record:
Group Name Owners
ID Members
Version Audit String

Groups have a name Group Name. SFS groups created by
regular users have names that are prefixed by the name of the
user. For example, the user alice can create groups such as
alice.friends and alice.colleagues. Users with ad-
ministrative privileges can create groups without this naming re-
striction. Each group also has a unique ID.
SFS groups have a list of Members and a list of Owners; the

group’s Owners are allowed to make changes to the group. The
elements of these lists are SFS user and group names which are
described below. Users who create personal groups implicitly
own those groups (e.g., alice is always considered an owner of
alice.friends).
Administrators can set up per-user quotas that limit the number

of groups a particular user can create, or they can disable group
creation and updates completely. Per-user quotas are stored in the
Privileges field of the user record.

3.1.4 Naming users and groups
The authentication server understands the following types of
names, which can appear on the Owners and Members lists in
group records:

• Public key hashes
• User names
• Group names

Public key hashes are ASCII-armored SHA-1 hashes [13] of
users’ public keys. They are the most basic and direct way to name
an SFS user.
User names refer to SFS user records defined either in the lo-

cal authentication database or on a remote authentication server.
Local user names are simply the User Name field of the record.
Remote user names consist of the User Name field plus the self-
certifying hostname of the authentication server that maintains the
user record.
Similarly, group names refer to group records defined either

in the local authentication database or on a remote authentication
server. Local group names are the Group Name field of the record,
and remote group names are the Group Name field plus the self-
certifying hostname of the remote authentication server.
To distinguish between public keys, users, and groups, Own-

ers and Members lists use the following two-character prefixes for
each element: u=, g=, and p=. The table in Figure 2 shows sev-
eral examples of these three types of names. (In the last example,
g=faculty@... is not prefixed by a user name because it was
created by a user with administrative privileges.)
Public key hashes are important for two reasons. First, they pro-

vide a universal way to name users who are not associated with
an authentication server (e.g., a cable modem user). Second, they
can provide a degree of privacy by obfuscating the user names on a
group membership list. Such lists of user names might be private; if
the user names correspond to email addresses, they might be abused
to send spam.
User names are also important because they provide a level of

indirection. Naming an authentication server (and its public key)
instead of naming the user’s public key provides a single point of
update should the user want to change his key or need to revoke
it. Authentication server self-certifying hostnames might appear
in more than one membership list, but they typically change less
frequently than user keys.
With respect to group names, indirection through an authentica-

tion server can provide a simple form of delegation. The last exam-
ple in Figure 2 shows how a user might name all of the faculty at
Stanford. The membership list for that group can be maintained by
administrators at Stanford, and SFS users who reference that group
do not need to be concerned with keeping it up-to-date. Because
all five types of names listed above can also appear on Owners
lists, groups with shared ownership are possible. For example, a
group might contain the members of a conference program com-
mittee. The group’s owners are its two co-chairs. The owners and
the members of this group all belong to different administrative or-
ganizations, but the SFS authentication server provides a unified
way to name each of them.
Naming users and groups with self-certifying hostnames dele-

gates trust to the remote authentication server. Delegation is im-
portant because it allows the remote group’s owners to maintain the

63

group record in ACL

Certificates Revisited
• What did we lose?

– Human-readable namespace
– Key management/revocation
– Offline operation
– Scalability

• Are these not important for a global FS?

credits
These slides incorporate parts of the following:
! “Decentralized User Authentication in a Global File

System” presentation slides from CS294-4, Stanford, N.
Borisov, 2003-10-06.

! “The Secure Password-Based Authentication Protocol” by
Jeong Yunkyoung.

! Encrypted Key Exchange: Password-Based Protocols
Secure Against Dictionary Attack, Bellovin and Merritt
(IEEE S&P 1992).

! The Secure Remote Password Protocol, T. Wu (NDSS
1998).

39

