
cloud security

EECE 571B “Computer Security”

Konstantin Beznosov

1

overview of cloud computing

2

hardware

software

facilities

power/cooling

IT labor

support

network

security

maintenance

management
tools

disaster
recovery

backup

Acquisition cost is 10%
of IT Spend

Operating cost is 90% of
IT Spend

Source: IDC

3

basics
§ definition

§ a collection/group of integrated and networked hardware, software and Internet
infrastructure (called a platform)

§ properties/characteristics
§ remotely hosted: services or data are hosted on remote infrastructure
§ abstracted: cloud platforms hide the complexity and details of the underlying

infrastructure from users and applications by providing very simple graphical
interface or API

§ ubiquitous: on demand services, that are always on, anywhere, anytime and
any place

§ commodified: utility computing model similar to that of traditional utilities, like
gas and electricity
§ pay for use and as needed, elastic (scale up and down in capacity and

functionalities).
§ available to the general public, organizations, and companies

4

4

Cloud Architecture

adopted from [1]

5

Different Cloud Computing Layers‏

Application Service
(SaaS)‏

Application Platform

Server Platform

Storage Platform Amazon S3, Dell, Apple, ...

3Tera, EC2, SliceHost,
GoGrid, RightScale, Linode

Google App Engine, Mosso,
Force.com, Engine Yard,
Facebook, Heroku, AWS

MS Live/ExchangeLabs, IBM,
Google Apps; Salesforce.com
Quicken Online, Zoho, Cisco

adopted from [1]

6

Services

Application

Development

Platform

Storage

Hosting

Cloud Computing Service Layers
Description
Services – Complete business services such as PayPal,
OpenID, OAuth, Google Maps, Alexa

Services

Application
Focused

Infrastructure
Focused

Application – Cloud based software that eliminates the
need for local installation such as Google Apps, Microsoft
Online

Storage – Data storage or cloud based NAS such as
CTERA, iDisk, CloudNAS

Development – Software development platforms used to
build custom cloud based applications (PAAS & SAAS)
such as SalesForce

Platform – Cloud based platforms, typically provided
using virtualization, such as Amazon ECC, Sun Grid

Hosting – Physical data centers such as those run by IBM,
HP, NaviSite, etc.

adopted from [1]

7

8

8

Virtualization
• Virtual workspaces:

– An abstraction of an execution environment that can be made dynamically
available to authorised clients by using well-defined protocols,

– Resource quota (e.g. CPU, memory share),
– Software configuration (e.g. O/S, provided services).

• Implement on Virtual Machines (VMs):
– Abstraction of a physical host machine,
– Hypervisor intercepts and emulates instructions from VMs, and allows

management of VMs,
– VMWare, Xen, etc.

• Provide infrastructure API:
– Plug-ins to hardware/support structures

Hardware

OS

App App App

Hypervisor

OS OS

Virtualized Stack

9

Virtual Machines
• VM technology allows multiple virtual machines to run on

a single physical machine.

Hardware

Virtual Machine Monitor (VMM) / Hypervisor

Guest OS
(Linux)

Guest OS
(NetBSD)

Guest OS
(Windows)

VM VM VM

AppApp AppAppApp
Xen

VMWare

UML

Denali

etc.

Performance: Para-virtualization (e.g. Xen) is very close to raw physical performance!

10

Windows Azure Components

 Windows Azure PaaS

Applications Windows Azure Service Model

Runtimes .NET 3.5/4, ASP .NET, PHP

Operating System Windows Server 2008/R2-Compatible OS

Virtualization Windows Azure Hypervisor

Server Microsoft Blades

Database SQL Azure

Storage Windows Azure Storage (Blob, Queue, Table)

Networking Windows Azure-Configured Networking

adopted from [3]

11

11

Datacenter Architecture

Nodes

TOR

LB LB
Agg

PDU

LB LB
Agg

LB LB
Agg

LB LB
Agg

LB LB
Agg

LB LB
Agg

Racks

Datacenter
Routers

Aggregation Routers
and

Load Balancers

Nodes

TOR

PDU

Nodes

TOR

PDU

Nodes

TOR

PDU

Nodes

TOR

PDU

Nodes

TOR

PDU

Nodes

TOR

PDU

Nodes

TOR

PDU

Nodes

TOR

PDU

Nodes

TOR

PDU

Nodes

TOR

PDU

Nodes

TOR

PDU

Nodes

TOR

PDU

Nodes

TOR

PDU

Nodes

TOR

PDU

…… …… … …

Top of Rack
Switches

Power Distribution Units

12

adopted from [3]

12

Windows Azure Datacenters

13

adopted from [3]

13

benefits of cloud computing
• enables companies and applications, which are system

infrastructure dependent, to be infrastructure-less
– instant software updates
– unlimited storage capacity
– robust against client’s local hardware failures
– clients can access their data and services from anywhere
– easier collaboration over data in the cloud

• save in capital and operational investment
• clients can:

– put their data on the platform instead of on their own desktop PCs and/or on
their own servers

– they can put their applications on the cloud and use the servers within the
cloud to do processing and data manipulations etc.

14

disadvantages of cloud computing
§ requires constant and fast Internet access
§ can be slow
§ features might be limited
§ stored data can be lost
§ inappropriate for some applications (e.g., HPC)
§ applications have to be adapted to the cloud infrastructure

and APIs
§ security concerns

15

15

how public cloud security differs

adopted from [2]:
Charlie Kaufman “What’s different about security in a Public
Cloud (Compared to a conventional data center),” keynote
at Cloud Computing Security Workshop, October 2011.

16

What’s Different?
• The stakes are higher
• The customers are less trusted…

• Must be treated as hostile

• The customers’ data must be protected from system
operators
• What’s good practice within an enterprise is a contractual guarantee in a public

cloud

17

What’s the Same?
• Detecting and preventing intrusions
• Mitigating DDoS attacks
• Protecting services from one another

• Including fair allocation of shared resources

• Keeping patches up to date
• Focus on minimizing the attack surface

18

Division of Responsibilities
• Protection of a service requires use of a variety of tools

• Some can be used by the cloud provider
• Some can be used by the customer
• Some can’t be provided easily by either, and these require some workaround

19

Generic Cloud Computing Engine

Cloud Hardware

Customer
Application

Cloud
Admins

Physical
Access

Customer
Admins

Customer’s
Users

Fabric
Controller

20

Generic Cloud Computing Engine

Cloud Hardware

Customer
Application

Cloud
Admins

Physical
Access

Customer
Admins

Customer’s
Users

Fabric
Controller

Primary
Attack Surfaces

21

XML signature wrapping attack

22

soap:Envelope

soap:Header

wsse:Security

ds:Signature

ds:SignedInfo

ds:Reference URI=”#body”

URI=”#Timestamp”ds:Reference

wsse:BinarySecurityToken

soap:Body

MonitorInstances

wsu:Id=”body”

IdInstanceId

wsu:Timestamp wsu:Id=”Timestamp”

wsu:Expires 2010-09-25T12:00

ds:DigestValue

ds:DigestValue

ds:SignatureValue

Verified data

Processed data

Figure 1: SOAP request sent to the EC2 interface

2.2 Amazon EC2 and S3 Control Interfaces
One of the most prominent cloud computing platforms is

Amazon Web Services (AWS). It furnishes an array of prod-
ucts, e.g. computation services, content delivery, databases,
messaging, payments, storage, and others, all made avail-
able to arbitrary companies and end-users. Elastic Compute
Cloud (EC2) and Simple Storage Service (S3) remain the
most popular among the chosen commodities. Amazon EC2
is a service that provides users with scalable computation ca-
pacity. Across a certain time period, the users can run their
own virtual instances with customizable (virtual) hardware
and operating system properties. Upon starting an instance
using the EC2 cloud control, the user can for example access
the instance over SSH (for Linux/Unix machines). Crypto-
graphic keys for the SSH login may be similarly generated
via the EC2 cloud control.

Amazon S3 gives its customers the possibility to store and
access arbitrary data chunks (in the so-called buckets). Since
EC2 does not provide persistent storage, it may be coupled
with S3.

The two main interfaces are primarily responsible for EC2
and S3 services’ control. The first one is a browser-based
Web application (AWS Management Console). Logging in
with their credentials, the user can check the status of the in-
stances, run new instances, generate keys for communication
with the running instances over SSH, create new buckets, or
generate keys and certificates for controlling the cloud over
SOAP- and REST-based Web Services. The Web applica-
tion control interface is not intended for customers who own
a huge number of machines that are dynamically started and
stopped according to the computer power and storage needs.
For this reason, AWS o↵ers a complementary Web Services
interface that gives the users a possibility to control their
cloud over SOAP and REST-based services. Communica-
tion with these two interfaces can be automated.

The SOAP interface provides users with the same func-
tionality as the AWS Management Console. The structure
of SOAP messages, the names of the operations and their
parameters are defined according to the XML Schema [12].
This schema is part of the WSDL document (Web Service
Description Language [10]) that can be retrieved from the
AWS Web site.

In order to provide integrity, authenticity, and freshness
of the exchanged SOAP messages, the WS-Security stan-
dard is applied. This results in a message structure as de-
picted in Figure 1 (for reader’s sake only the relevant parts
are included). The <soap:Envelope>, <soap:Header>, and
<soap:Body> elements delimit the structure of the SOAP
message. The <wsu:Timestamp> element includes the mes-
sage expiration date and therewith ensures its recentness.
<wsse:BinarySecurityToken> [17] includes a Base64 enco-
ded X.509 certificate that identifies the user. The <ds:Sig-
nature> element contains an XML Signature [4] authenti-
cating the message issuer and protecting the integrity
of the <wsu:Timestamp> and <soap:Body> elements. The
<MonitorInstances> element indicates the (sample) opera-
tion to be called on the AWS interface.

The signature element and its content are created using
the XML Signature standard. When verifying the integrity
of the message, primarily the elements <wsu:Timestamp>
and <soap:Body> are retrieved through the usage of the Id-
based referencing. The values of the Id attributes are in-
cluded as the parameters in the <ds:Reference> elements.
Later on, the digest values over these elements are com-
puted and compared to the values in the <ds:DigestValue>
elements. Finally, the whole <ds:SignedInfo> element (in-
cluding the two <ds:DigestValue> hash values) is norma-
lized, a final hash value h is computed, and the signature
from <ds:SignatureValue> is verified against h. In a case
when all the checks are passed, the function defined in the
SOAP body can be executed.

In addition to the EC2 SOAP interface described above,
AWS provides three other types of Web Services interfaces:
S3 SOAP Web Services interface with custom signature vali-
dation, AWS REST-based Web Services interface, and AWS
XQuery Web Services interface. We are consciously deciding
to exclude them from the discussion in this paper as they
are not involved in the attacks we are covering.

2.3 Eucalyptus and Ubuntu Server Edition
While Amazon Web Services operates as a public cloud

provider, the need for private cloud environments fostered
the development of freely available open source implementa-
tions of the cloud systems. Among other advancements, the
Eucalyptus cloud implementation [1] gained a lot of pub-
lic attention and made its way into the well-known Ubuntu
operating system (Ubuntu Server Edition). As of today, Eu-
calyptus is present within 25.000 installations of the world’s
most widely deployed software platform for Infrastructure-
as-a-Service clouds.

As far as functionality is concerned, the cloud manage-
ment interfaces of Eucalyptus were designed to copy the
Amazon cloud control interface in order to support a switch
from the prominent pre-existent Amazon EC2 cloud to an
Eucalyptus cloud. Nevertheless, it must be stressed that
the functionality and security mechanisms have been imple-
mented independently. On that account, every Eucalyptus
installation by default provides almost the exact same inter-
faces as the Amazon EC2 cloud. Furthermore, to make the
message of our work clear, it has to be noted that the Eu-
calyptus SOAP interface provides the same methods as the
Amazon EC2 interface described in the previous subsection.
It also puts forth a customized Web front-end for a manual
cloud administration.

5

soap:Envelope

soap:Header

wsse:Security

ds:Signature

ds:SignedInfo

ds:Reference

soap:Body

CreateKeyPair

URI=”#body”

wsu:Id=”attack”

wsse:BinarySecurityToken

KeyName

soap:Body

MonitorInstances

wsu:Id=”body”

IdInstanceId

Wrapper

attackerKey

Figure 2: Classical Signature Wrapping Attack

2.4 XML Signature Wrapping
XML Signature [4] is the standard protection means for

XML encoded messages, SOAP included. The so-called
XML Signature Wrapping attack introduced in 2005 by McIn-
tosh and Austel [22] illustrated that the naive use of XML
Signature may result in signed XML documents remaining
vulnerable to attacker’s undetectable modifications. Thus,
with a typical usage of XML Signature to protect SOAP
messages, an adversary may be able to alter valid messages
in order to gain unauthorized access to protected resources.

Generally speaking, the attack injects unauthorized data
into a signed XML document alongside a possible restruc-
turing in a way that the document’s integrity is still verified,
but the underlying consequence is that the undetected mod-
ifications are treated as authorized input during any further
processing steps. In order to explain this attack, we assume
that the attacker intercepts the SOAP message described in
Figure 1 and needs to transform the operation in the SOAP
body. The result of the signature wrapping attack is shown
in Figure 2.

As shown in the figure, the original SOAP body element
is moved to a newly added bogus wrapper element in the
SOAP security header. Note that the moved body is still
referenced by the signature using its identifier attribute
Id="body". The signature is still cryptographically valid, as
the body element in question has not been modified (but
simply relocated). Subsequently, in order to make the SOAP
message XML schema compliant, the attacker changes the
identifier of the cogently placed SOAP body (in this example
he uses Id="attack"). The filling of the empty SOAP body
with bogus content can now begin, as any of the operations
defined by the attacker can be e↵ectively executed due to
the successful signature verification. In a given example,
the adversary initiates a key generation process on behalf of
the legitimate user being attacked.

3. AWS SOAP INTERFACE ATTACKS
Within the scope of a security analysis of Amazon’s EC2

cloud control interfaces, we carried out an investigation of
the SOAP message processing of the cloud control with re-
spect to the applicability of XML Signature wrapping at-
tacks.

3.1 Vulnerability Analysis
Authentication of a SOAP request message is done by

checking an XML Signature that has to cover the times-

Figure 3: Signature wrapping attack type 1

tamp header and the SOAP body. However, the overall
structure of incoming SOAP messages—defined by the XML
Schema [11]—is not checked at all. Therefore, it becomes
possible to add, remove, duplicate, nest, or move arbitrary
XML fragments within the SOAP request message—without
the message’s validity being a↵ected.
We performed a set of SOAP requests that exploited this

flexibility in SOAP message design. We have employed a
validly signed SOAP message that triggers the operation
MonitorInstances. This operation is used to gather status
information on the user’s EC2 virtual machine instances.
Since the Amazon EC2 SOAP interface usually replies with
quite meaningful SOAP fault messages in case of an error,
we were able to easily test the Amazon EC2 SOAP interface
for its signature wrapping resistance.
Remark: It is important to note that by using the signa-

ture wrapping technique we were able to invoke operations
such as starting new VM instances, stopping any running
instances, or creating new images and gateways in a vic-
tim’s cloud environment—using the very same single eaves-
dropped SOAP request for the MonitorInstances operation
(or any other operation of the EC2 SOAP interface).

Signature Wrapping Attack Variant Type 1. The
starting point for our security analysis was derived from the
previous work done by Gruschka and Lo Iacono in 2009 [16].
Their attack used a forged SOAP request with a duplica-
tion of the signed SOAP body. Likewise, we duplicated the
SOAP body of the MonitorInstances message, changing
the operation in the first SOAP body to CreateKeyPair.
We sent the forged message to the EC2 SOAP interface for
verification. The message was successfully validated, and a
new key pair for SSH access to an EC2 instance has been
created. Conclusively, the EC2 SOAP interface validated
the XML Signature only for the second SOAP body (which
was not modified and hence verified successfully), but it used
the first SOAP body for determining operation and parame-
ter values. Supplementary tests with other operation names
have indicated that an adversary could use this technique to
trigger arbitrary operations. Still, all attacks must be per-
formed within the five minute time frame enforced by the
timestamp.
A slight attack variant circumvents the timestamp verifi-

6

adopted from [4]

22

place of check to place of use
(POCTPOU)

23

User
Identification

Operation
Interpretation

XML Syntax
Check

Amazon
Cloud

SOAP

1

2

Signature
Validation

3

4

Figure 5: Amazon EC2 SOAP message processing
architecture

Figure 6: SOAP fault messages for a SOAP request
with a syntactical (left) and semantic fault (right)

assumed the Amazon Web Service interface consisted of a
set of modules that perform specific tasks for every SOAP
message received at the service interface. The order of these
modules, and the amount of verifications performed therein
usually is an important parameter of whether and how a typ-
ical web-service-specific attacks can be accomplished. Our
goal was to gain as much information on this internal topol-
ogy as possible, for a full view on the EC2 SOAP interface
implementation.

Through sending hand-crafted SOAPmessages to the EC2
interface, we e↵ectuated a series of the SOAP-based tests.
Each of these SOAP messages was carrying a di↵erent type
of fault, causing the SOAP server implementation to raise di-
verse errors and respond with di↵erent types of SOAP fault
messages. For instance, upon processing a SOAP message
that contained a basic syntactical fault in the SOAP mes-
sage’s XML structure (e.g. a missing ’>’ character in the
XML syntax) we received a SOAP fault message with a gen-
eral XML structure as illustrated in Figure 6 (left). Please
note the way the XML tag names are equipped with pre-
fixes (e.g. "SOAP-ENV"). Though usually there is no seman-
tic relevance for the choice of these namespace prefixes, they
nevertheless tend to change for di↵erent XML frameworks,
hence allowing a di↵erentiation on a SOAP fault message’s
origin.

A second test was performed with the use of SOAP mes-
sage with correct XML syntax but faults on the semantic
level. As a result, the EC2 SOAP interface responded with
a SOAP fault message as well, but this time there was a
remarkable di↵erence in the way the XML data was serial-

ized. Figure 6 (right) shows an example of such a SOAP
fault, received in reply to a SOAP request with an expired
timestamp. Note the di↵erences in how the XML names-
paces are chosen (here: "soapenv"). Hence, it is reasonable
to assume that both SOAP fault messages have been gener-
ated by di↵erent SOAP frameworks.
Similarly, test SOAP messages containing other types of

faults, such as data type violations in operation parame-
ters, invalid XML Signatures, or X.509 certificates have been
used, as they were not known to the Amazon EC2 user
database. We also performed tests with SOAP messages
that contained two or more of these faults at the same time
in order to see which fault the EC2 SOAP interface com-
plained about first. This way, we have managed to iden-
tify the order in which the particular tasks are performed,
the ways in which they accessed the XML data from the
SOAP messages, and the estimated modularization archi-
tecture used within the EC2 SOAP interface.
The results of this analysis are depicted in Figure 5. As

can be seen, the AWS SOAP interface processes the incom-
ing SOAP messages in (at least) four separate logical steps,
implemented by separate modules.

XML Syntax Check: In a first step, the XML parser per-
forms a simple XML syntax check (so-called well-formedness).
If even a single one of the XML tags is not properly closed
or a namespace declaration is missing, the interface returns
a SOAP fault. This step is most probably done by an in-
dependent XML parser, as the namespaces and the XML
structure in the SOAP responses di↵ered from the SOAP
responses that were returned after processing of well-formed
SOAP requests (see above).

Operation Interpretation and Time Constraints: In
a second step, the XML processor reads and interprets the
content of the SOAP request. First, it validates the time
given within the <wsu:Timestamp> element. Then, it reads
the <soap:Body> element, validating the contained oper-
ation name (e.g. MonitorInstances) and the number of
its parameters. In all probability, this is obtained by us-
ing a streaming XML parser (such as SAX or StAX), since
on duplication of the <wsu:Timestamp> or <soap:Body> ele-
ments only the first occurrence of that element is interpreted.
This can be deemed as typical behavior for implementations
that use streaming-based XML processing approaches, since
these tend to interrupt message parsing immediately after
having processed the first occurrence of the particularly in-
teresting XML element. (Remark: This simple syntax check
does not detect changes to the structure of the SOAP docu-
ment, thus our attack messages are passing this step without
any issues).
As can be seen by all the signature wrapping variants,

the wsu:Id attributes of the wrapped and executed elements
have to stay equal. Therefore, we assume that the Ids of
processed elements are extracted and passed to the further
XML Signature verification step.

User Identification and Authorization: A third step
attempts to identify the user by processing the X.509 cer-
tificate contained in the <wsse:BinarySecurityToken> el-
ement. The certificate determines the customer account of
the Amazon user, thus performing solely the SOAP request’s
authorization task (and leaving not the authentication out).

XML Signature Verification: The last step before the
operation in the SOAP message is executed, comprises of

8

time of check to time of use (TOCTTOU)

adopted from [4]

23

Protecting the Infrastructure from
Customer Admins

• Many systems delegate limited administrator privileges
• …but they typically don’t assume the limited

administrators are actually hostile
• In a public cloud, you must assume they are

24

Protecting the Infrastructure from
Customer Applications

• Within a corporate data center, it is not unusual for some
server to be compromised by some bug

• Designers therefore should assume that these
applications might be hostile

• But most don’t take the threat seriously; in a public cloud,
we must

• If you mess up in your own data center, you’re less likely
to be sued

25

Helping Customers to protect
themselves from their users

• Typical datacenters don’t expose their servers to the full
onslaught of the Internet
• Datacenter firewalls
• Intrusion detection hardware/software
• DDoS mitigation systems
• SSL accelerators

• Often these require considerable expertise to configure
optimally

26

So those were the attacks we prepared
for…

What did we actually see?
• Bots establishing accounts with stolen credit cards

• A new challenge that requires some innovative thinking…

27

Protecting the Internet from our
Customers

A Cloud provider acts as – among other things – an Internet
Service Provider

• Provides greater anonymity than most ISPs
• Provides more bandwidth than most ISPs
• Rents out resources for a much shorter period of time

What kinds of behavior are acceptable?

28

Bad Behavior

• Acting as a rendezvous point for a bot army
• Impersonating another site in a phishing attack
• Sending out Spam!
• Posting malware for download
• Conducting DoS attacks (AaaS)
• Probing systems for vulnerabilities

29

The Internet has developed an
immune system

• IP addresses that are the source of spam or malware get
blacklisted

• IP addresses that are the source of DoS or probing
attacks are blocked and reported to their owners for
corrective actions

• If someone rents an IP address and a gigabit of bandwidth
for 15 minutes, the reaction hurts the next tenant

30

How do you define bad behavior?
• How do you distinguish a spam engine from a mail agent

relay distributing mail to a mailing list?
• How many failed DNS queries are allowed before it

constitutes an exhaustive search through a namespace?
• What looks like an attack could be someone testing the

security of their own system

31

How do you handle complaints?
• Forward them to the customer responsible?
• Forward customer contact information to the complainant?
• The complainant could be complaining as a form of DoS

attack on the customer

32

credits
1.Mark Baker “An Introduction and Overview of Cloud

Computing” ACET, University of Reading, 2009-05-19.
2.Charlie Kaufman “What’s different about security in a

Public Cloud (Compared to a conventional data center),”
keynote at CCSW ’11, October 2011.

3.“Introducing Windows Azure” Arnon Rotem Gal-Oz, Alon
Fliess.

4.J. Somorovsky, M. Heiderich, M. Jensen, J. Schwenk, Nils
Gruschka, and Luigi Lo Iacono, “All your clouds are
belong to us: security analysis of cloud management
interfaces,” In Proceedings of the 3rd ACM workshop on
Cloud computing security workshop (CCSW ’11). ACM,
New York, NY, USA, 3-14.

33

33

