Intrusion Detection

EECE 571B Computer Security

Konstantin Beznosov

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA ece Electrical and Computer Engineering

Tuesday, January 31, 2012

Intrusion Characteristics

- Main idea: a *compromised* system has different characteristics than a normal one
 - Statistical patterns of activity
 - Suspicious activity
 - Specifications

IDS goals

- Detect wide range of intrusions
 - Including previously unknown attacks
- Detect intrusions quickly
 - Allow timely response
 - A good IDS can be used for intrusion prevention
- Explain intrusions well
 - Allow intelligent response
- Detect accurately

intrusion detection strategies

signature detection

- decide in advance what type of behavior is undesirable (security policy)
- codify undesirable behavior into signatures
- promises to detect intrusions in a timely and efficient manner
- problems
 - attacks and violations have to be easily codified into signatures (security policies)
 - difficulty in detecting previously unknown intrusions
 - intrusion signatures must be updated frequently

anomaly detection

- declare everything that is unusual for the subject suspect, and rise an alarm
- promises to detect
 - abuses of legitimate privileges that cannot easily be codified into security policy
 - detect attacks that are "novel" to the intrusion detection system
- problems
 - tendency to take up data processing resources
 - the possibility of an attacker teaching the system that his illegitimate activities are ordinary

èce

desirable properties of IDSs

effectiveness

 to what degree does it detect intrusions into the target system, and how good is it at rejecting false positives (false alarms)?

efficiency

 the run-time efficiency of the intrusion detection system, how many computing resources and how much storage does it consume, can it make its detections in real-time?

ease of use

- How easy is it to field and operate for a user who is not a security expert? What demands can be made of the person responding to the intrusion alarm? How high a false alarm rate can he/ she realistically be expected to cope with, and under what circumstances is he/she likely to ignore an alarm?
- security
 - ability to sustain attacks on IDS itself
- Interoperability with other IDSs
- transparency
 - how disruptive for an organization deployment and operation of an IDS
- collaboration with other security (mechanisms) in the system/ network

èce

health example

- the basic rate of incidence is only 1/10,000 = P(S)
- test is 99% accurate
 - P(R|S) = 99% and P(¬R|¬S) = 99%
- you tested positive for the disease (R)
- what's the probability P(S|R) of you having the disease?

$$P(S | R) = \frac{P(S) \cdot P(R | S)}{P(S) \cdot P(R | S) + P(\neg S) \cdot P(R | \neg S)}$$
$$P(S | R) = \frac{1/10000 \cdot 0.99}{P(S | R)} = 0.00980... \approx 1\%.$$

 $1/10000 \cdot 0.99 + (1 - 1/10000) \cdot 0.01$

adopted from [3]

ece

the base-rate fallacy

Venn diagram for ID event space

Tuesday, January 31, 2012

let's plug some IDS numbers

- 1,000,000 audit records per day
- 1-2 intrusions per day
- 10 records per event (including intrusion)
- one site security officer
 - can only react to low number of alarms
 - false alarm rate should be less than 50%

Bayesian detection rate

$$P(I|A) = \frac{P(I) \cdot P(A|I)}{P(I) \cdot P(A|I) + P(\neg I) \cdot P(A|\neg I)}$$

$$P(I) = \frac{1}{\frac{1 \cdot 10^{6}}{2 \cdot 10}} = 2 \cdot 10^{-5}; P(\neg I) = 1 - P(I) = 0.99998$$

$$P(I|A) = \frac{2 \cdot 10^{-5} \cdot P(A|I)}{2 \cdot 10^{-5} \cdot P(A|I) + 0.99998 \cdot P(A|\neg I)}$$

adopted from [3]

So what?

Even for the unrealistically high detection rate 100%, we have to have a very low false alarm rate (on the order of 10⁻⁵) for the Bayesian detection rate to have a value of 66%

èce

Tuesday, January 31, 2012

èce

conclusions from IDS base-rate fallacy

- "the factor limiting the performance of an intrusion detection system is not the ability to identify behavior correctly as intrusive, but rather its ability to suppress false alarms"
- "one should measure the false alarm rate in relation to how many intrusions one would expect to detect, not in relation to the maximum number of possible false alarms"

Anomaly Models

- Manual models
 - Describe what behavior is correct or anomalous
- Statistical models
 - Learn what is the normal behavior

Statistical Models

- Monitor system in normal state
- Learn patterns of activity
 - Various statistical models to do this
- Decide an intrusion threshold
 - E.g. 2 standard deviations from normal
- Adapt over time (optional)

Simple Model (Normal)

- Measure values of parameters
 - e.g., network load
- Calculate mean & standard deviation
- Set a threshold based on a confidence interval
 - e.g., 2 standard deviatons =~ 95%
 - 3 standard deviations =~ 99.7%
- Alert for values outside the threshold

Markov Models

- Consider anomalous sequences of operations
 - Usually system calls
- Markov models: next operation depends on current one
 - E.g. read follows open
- Transition probabilities computed by training
- Can classify likelihood of sequences

Higher Order Markov Models

- First order Markov models consider only the previous state
 - I.e. likelihood of each digram of operations
 - E.g. if training set is:
 - how is it going?
 - the sky is blue.
 - Then the sentence "how is blue" falls within the model
- Higher order Markov models consider several previous states

Tuesday, January 31, 2012

n-grams

 Another way to think about previous states is with n-grams open read write open mmap write fchmod close

3-grams are:

open read write write open mmap mmap write fchmod fchmod close read write open open mmap write write fchmod close

Statistical Models

Pro:

- No need to know what is "normal" in advance
- Flexibility between installations
- Adaptive
- Control of false positive rates

Statistical Models

Cons:

- Statistical model may be wrong
 - E.g. not normally distributed data
- Training set may be inadequate
 - Same problem as testing
- Alerts difficult to explain
- Attacks may be able to get around them

Misuse specification

- Look for patterns of activity that shouldn't happen
 - e.g., control transfer to a randomized location
 - e.g., traffic with internal address coming from outside
- Usually very low false positive rate
- But only detects known attacks

Specification-based Detection

- Specify correct operation, everything else an attack
- E.g. rdist specification
 - open world readable files
 - open non-world readable files rdist creates
 - create files in /tmp
 - chown/chmod files it creates
- Any other filesystem operation is an error

How Bro Works

- "Event engine" distills filtered stream into high-level, *policy-neutral* events reflecting underlying network activity
 - E.g. Connection-level:
 - connection attempt
 - connection finished
 - E.g. Application-level:
 - ftp request
 - http_reply
 - E.g. Activity-level:
 - login success

Bro

adopted from

How Bro Works

Tuesday, January 31, 2012

How Bro Works

- "Policy script" processes event stream, incorporates:
 - Context from past events
 - Site's particular policies
- ... and takes action:
 - Records to disk
 - Generates alerts via *syslog*, email, paging, etc.
 - Executes programs as a form of <u>response</u>

- Using the Bro language, sites can write custom policy scripts to generate alarms on any policy violation.
- For example, if a site only allows external <u>http</u> and <u>mail</u> to a small, controlled lists of hosts, they could do this:

```
const web_servers = { www.lbl.gov, www.bro-ids.org, };
```

```
const mail_servers = { smtp.lbl.gov, smtp2.lbl.gov, };
```

```
redef allow_services_to: set[addr, port] += {
    [mail_servers, smtp],
    [web_servers, http],
```

- };
- Bro can then generate an *Alarm* or even terminate the connection for policy violations:
 - if (service !in allow_services)
 NOTICE([\$note=SensitiveConnection, \$conn=c,]);
 if (inhound \$6 norming in terminate suggestivel inhound as
 - if (inbound && service in terminate_successful_inbound_service)
 terminate_connection(c);

adopted from

Mimicry Attacks

- Tailor attack specifically to an IDS
- e.g., pad system calls sequences to look legitimate
- Normal sequence:

open read write close open fchmod close exec

Naïve attack:

open read exec

Mimicry attack (digrams):

open read write close exec

Network Intrusion Detection

- Most attacks come from the outside network
- Monitoring outside link(s) easier than monitoring all systems in an enterprise
- Network Intrusion Detection Systems (NIDS) a popular tool

NIDS challenges

NIDS Challenges

- Volume of traffic
- Attacks on the monitor
- Uncertainty about host behavior

Intrusion Response

- Once intrusion is detected, what to do?
- Prevention
 - Stop the attack if detected fast enough
- Containment
 - Prevent further damage
- Eradication
 - Restore system to known good state
- Follow-Up
 - Track down attackers
- Most work is on eradication

credits

These slides incorporate some of the material from

- 1. "Intrusion Detection" course CS463.12 at the University of Illinois at Urbana-Champaign
- 2.B. L. Tierney, V. Paxson, "An Overview of the Bro Intrusion Detection System," presentation.
- 3.S. Axelsson, "The base-rate fallacy and the difficulty of intrusion detection," ACM Trans. Inf. Syst. Secur. 3, 3 (August 2000), 186-205

