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Basics and Terminology



authentication is binding of 
identity to subject

! Identity is that of external entity 

! Subject is computer entity

! Subject a.k.a. principal

definition



! What you know

! What you have

! What you are

What Authentication Factors are used?



Password-based Authentication



! Lots of things act as passwords!
! PIN
! Social security number
! Mother’s maiden name
! Date of birth
! Name of your pet, etc.

• Sequence of words
! Examples: pass-phrases
• Algorithms
! Examples: challenge-response, one-time passwords

What’s Password?



! Why is “something you know” more popular than 
“something you have” and “something you are”?

! Cost: passwords are free
! Convenience: easier for SA to reset password than to 

issue new smartcard 

Why Passwords?



adversary model
! objectives

! compromise any account(s) on a system
! compromise specific account

! capabilities
! before the attack

! password cracking tool(s)
! access to previously leaked/compromised passwords

! during the attack
! password cracking tool(s)
! ability to perform off-line dictionary attacks on the password database, if 

leaked/compromised
! ability to perform online dictionary attacks
! knowledge of account names
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! Attacker could…
! Target one particular account
! Target any account on system
! Target any account on any system
! Attempt denial of service (DoS) attack

! Common attack path
! Outsider → normal user → administrator
! May only require one weak password!

Attacks on Passwords



off-line cracking attacks 
on password databases



Crypto keys
! Suppose key is 64 bits
! Then 264 keys
! Choose key at random
! Then attacker must try about 

263 keys

Passwords
• Suppose passwords are 8 

characters, and 256 different 
characters
• Entropy is log2(bn)
• Then 2568 = 264 pwds

Keys vs Passwords



Where this Breaks Down
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Where this Breaks Down

It overestimates the security for shorter 
cracking sessions
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Where this Breaks Down

At the same time, it doesn’t model the security 
over longer cracking sessions
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What this all Means:

Shannon Entropy != Guessing Entropy

Password entropy as defined in NIST 800-63 is not a useful measurement for the 
defender
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Crypto keys
! Suppose key is 64 bits
! Then 264 keys
! Choose key at random
! Then attacker must try about 

263 keys

Passwords
• Suppose passwords are 8 

characters, and 256 different 
characters
• Entropy is log2(bn)
• Then 2568 = 264 pwds
• Users do not select 

passwords at random
• Attacker has far less than 263 

pwds to try (dictionary 
attack)

Keys vs Passwords



"Humans are incapable of securely storing high-
quality cryptographic keys, and they have 
unacceptable speed and accuracy when 
performing cryptographic operations. 

(They are also large, expensive to maintain, 
difficult to manage, and they pollute the 
environment. 

It is astonishing that these devices continue to 
be manufactured and deployed. 

But they are sufficiently pervasive that we must 
design our protocols around their limitations.)"

Charlie Kaufman, Radia Perlman, Mike Speciner 
in "Network Security: Private Communication in a Public World"

Why not Crypto Keys?



• Store as cleartext

• If password file compromised, all passwords revealed

• Encipher file

• Need to have decipherment, encipherment keys in 

memory

• Store one-way hash of password

How to Store Passwords in the 
System?



! Bad idea to store passwords in a file
! But need a way to verify passwords
! Cryptographic solution: hash the passwords

! Store y = hash(password)
! Can verify entered password by hashing
! If attacker obtains password file, he does not obtain 

passwords
! But attacker with password file can guess x and check 

whether y = hash(x)
! If so, attacker has found password!

Password File



! Attacker pre-computes hash(x) for all x in a 
dictionary of common passwords --- Rainbow 
Table

! Suppose attacker gets access to password file 
containing hashed passwords
! Attacker only needs to compare hashes to his pre-

computed dictionary
! Same attack will work each time

! Can we prevent this attack? Or at least make 
attacker’s job more difficult?

Dictionary Attack



! Store hashed passwords
! Better to hash with salt
! Given password, choose random s, compute 
   y = hash(password, s) 
 and store the pair (s,y) in the password file
! Note:  The salt s is not secret
! Easy to verify password
! Attacker must recompute dictionary hashes for 

each user " lots more work!

Password File



Standard Offline Password Cracking 
Attack

22



on-line password guessing attacks



features of on-line guessing
! no need to have access to the password database
! limited number of attempts

! but can be distributed through IP addresses (botnets) or accounts
! lock out can lead to DOS on the account(s)
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defence techniques
! making users to choose stronger passwords
! automatic turing test (ATT), e.g., CAPTCHA after so many 

failed attempts
! account locking

! DOS is a challenge

! delaying server response
! ineffective against botnets

! 2-step verification
! using another channel (e.g., SMS or voice call to perform additional verification)
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users and passwords

source: Florencio, D. and Herley, C. “A large-scale study of web password habits,” In Proceedings of the 16th 
international Conference on World Wide Web (Banff, Alberta, Canada, May 08 - 12, 2007). WWW '07. ACM, New York, 
NY, 657-666. DOI= http://doi.acm.org/10.1145/1242572.1242661

• The average user has 6.5 passwords, 
each of which is shared across 3.9 different sites. 

• Each user has about 25 accounts that require passwords, and 
types an average of 8 passwords per day.

• Users choose passwords with an average bitstrength 40.54 bits.
• The overwhelming majority of users choose passwords that 

contain lower case letters only 
(i.e., no uppercase, digits, or special characters) unless forced to 
do otherwise. 

• 0.4% of users type passwords (on an annualized basis) at verified 
phishing sites.

• At least 1.5% of Yahoo users forget their passwords each month.

over 0.5 M passwords
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! too many passwords to remember
! Results in password reuse

!Why is this a problem?
!compromising important accounts via “junk” ones

! failure to change default passwords
! social engineering
!phishing

! keyloggers
! resetting/recovering password by guessing 

backup questions
! error logs may contain “almost” passwords
! bugs, keystroke logging, spyware, etc.

Other Password Issues



users choose same/weak passwords

the most frequent passwords for different sites
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(a) Fraction of passwords that are used in common by different sites

RockYou Faithwriters MySpace

123456 123456 password1

12345 writer abc123

123456789 jesus1 fuckyou

password christ monkey1

iloveyou blessed iloveyou1

princess john316 myspace1

1234567 jesuschrist fuckyou1

rockyou password number1

12345678 heaven football1

abc123 faithwriters nicole1

1

(b) Ten most frequent passwords for different sites. Passwords underlined
are shared by at least two services. The wide difference likely depend on
background (e.g., Faithwriters) or password rules (e.g., MySpace).

Figure 1. Password Distributions for Different Sites

4 Constructing an Adaptive Password Meter

We use techniques from statistical language processing,
namely Markov-Models [14], to implement an adaptive pass-
word strength meter that both accurately estimates the proba-
bilities from a relatively small sample, and is secure against
leakage of the locally stored data. Basically, for every pass-
word x which is added to the password list, we store the
hashed (and possibly salted) value Hash(x) as commonly
done. In addition, we determine the n-gram counts for the
password (i.e., frequencies of n consecutive characters in the
password), merge this information with previously stored
n-grams, to obtain the frequencies over the entire password
database, and add some noise to this data. These n-gram
frequencies can then be used to compute an estimate on the
probability of a fresh password.

4.1 Markov Models

Over the last years, Markov models have proven very
useful for computer security in general and for password
security in particular. For example, Narayanan et al. [19]
showed the effectiveness of Markov models to password
cracking.

The idea is that adjacent letters in human-generated pass-
words are not independently chosen, but follow certain reg-
ularities (e.g., the 2-gram th is much more likely than tq
and the letter e is very likely to follow th). In an n-gram
Markov model, one models the probability of the next char-
acter in a string based on a prefix of length n. Hence for a

given string c
1

, . . . , cm we can write

P (c
1

, . . . , cm) =

mY

i=1

P (ci|ci�n+1

, . . . , ci�1

).

Our construction only keeps track of the n-gram counts
count(x

1

, . . . , xn), and the conditional probabilities can eas-
ily computed from these by the following formula:

P (ci|ci�n+1

, . . . , ci�1

)

=

count(ci�n+1

, . . . , ci�1

, ci)P
x2⌃

count(ci�n+1

, . . . , ci�1

, x)

Also note that the size of the password’s alphabet (⌃) is
quite important. We initially used an alphabet of size 96 to
estimate the password strength. However, we observed that
most of the characters are rarely used, leading to sparseness
problems. In the final version of our scheme, we choose to
use the following alphabet composed of 38 distinct charac-
ters [a � z][0 � 9][U ][S], where U and S are two symbols
representing all upper-case letters and all special characters,
respectively. This leads to reduce sparseness in the dataset
and better probability estimations.

4.2 Our Construction

Our construction uses Markov Models [14] from the
previous section to estimate the strength of passwords. What
makes this construction interesting is that, by adding some
fine-dosed amount of noise, we can actually prove that the
construction is secure against leakage of the n-gram database.
(For notational simplicity, we assume that all passwords have



Influencing Users’ Choices of Passwords



Types of Password Creation Policies

•Explicit 
•“Your password must be 8 characters long and contain a digit”

•External
•Part of the password is assigned to you, aka a system generated password or 

two factor authentication

• Implicit
•“Your password isn’t strong enough, choose another”

•Example: Blacklists 
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Explicit Policies



From:
Testing Metrics for Password Creation 
Policies by Attacking Large Sets of 
Revealed Passwords

Matt Weir - Florida State University
Sudhir Aggarwal - Florida State University
Michael Collins - Redjack LLC
Henry Stern - Cisco Ironport Systems

Presented at Computer and Communications Security (CCS) 
Conference, October 2010



The RockYou List

! Provided widgets for most of the 
major social networking sites

! Hacked in November 2009
! Over 32 million plaintext 

passwords were released
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The PhpBB List

! Development site for the 
popular phpbBB bulletin board 
software

! Hacked in January 2009
! Over 259k unsalted MD5 

hashed passwords, and another 
83k salted passwords
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And Many Others:

Singles.org

FaithWriters

NeoPets

MySpace
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Full Disclosure:
! Password strength rarely matters in an online attack
! More common attacks take advantage of:

!Password reuse
!Malware
!Phishing attacks!
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Effect of Password Length
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An Even Shorter Cracking Session:
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The Effect of Requiring Digits
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How Digits were Used:

Location Example Percentage

After password123 64.28%

All Digits 1234567 20.51%

Other passw0rd, pass123word, p1a2ssword... 9.24%

Before 123password 5.95%

*Taken from 7+ character long passwords that contained at least one 
digit
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Top 10 Digits From the RockYou 
Training List

Rank Digit Percentage

#1 1 10.98%

#2 2 2.79%

#3 123 2.29%

#4 4 2.10%

#5 3 2.02%

#6 123456 1.74%

#7 12 1.49%

#8 7 1.20%

#9 13 1.07%

#10 5 1.04%

26.72% of All Digits
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When Uppercase Characters are 
Required

42



Requiring UpperCase - Shorter 
Cracking Session
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Top Ten Case Mangling Rules of 7 Char 
Strings

  String: U=Upper, L=Lower Probability
 UUUUUUU 53.56%
 ULLLLLL 35.69%
 ULLLULL 1.05%
 LLLLLLL - aka passwor!D 1.03%
 ULLLLLU 0.90%
 ULLULLL 0.85%
 ULULULU 0.68%
 LLLLLLU 0.62%
 UULLLLL 0.61%
 UUULLLL 0.59%
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When Special Characters are Required
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Special Chars Required - Shorter 
Cracking Session
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Top Ten Structures for Special 
Characters

  String: A=Alpha, D=Digit, 
S=Special

Probability
 AAAAAAS 28.50%
 AAASAAA 7.87%
 AAAASDD 6.32%
 AAAAASD 6.18%
 AASAAAA 3.43%
 AAAASAA 2.76%
 AAAAASA 2.64%
 SAAAAAS 2.50%
 ASAAAAA 2.38%
 AAAAASS 2.17%
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The Effect of BlackLists
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A Closer View:
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Comparison of Different Password 
Requirements
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Common Mangling Rules and 
BlackLists
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Implicit Policies



Password Strength Meters
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Facebook

Gmail

MSN Live



heuristics of password meters
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Password Ideal Markov NIST MS Google
password 9.09 9.25 21 1 1
password1 11.52 11.83 22.5 2 1
Password1 16.15 17.08 28.5 3 1
P4ssw0rd 22.37 21.67 27 3 1
naeemha 21.96 28.42 19.5 1 0
dkriouh N/A 42.64 19.5 1 0
2GWapWis N/A 63.67 21 3 4
Wp8E&NCc N/A 67.15 27 3 4

Table 1. Scores (in bits) as computed by the

markov model and the ideal password meter

from Section 2.1. For the ideal meter the prob-

ability is the empirical frequency in the Rock-

You dataset. The last three passwords were

generated at random using, respectively, the

following rules [a-z]{7}, [a-zA-Z0-9]{8}
and [a-zA-Z0-9\special]{8}.

have access to statistics from lists such as language dictionar-
ies and leaked password lists, and knowledge about common
mangling rules (i.e., rules to derive more passwords from
such lists by appending numbers and special characters).
However, there are many more sources of information an
adversary has access to: their technical background, the
password policies enforced by the site, theme of the site, etc.

It is hard, if not impossible, to come up with a comprehen-
sive list of sources that the adversary is using. Therefore, in
this paper, we consider an adversary who knows the distribu-
tion of the service’s passwords. This automatically considers
all the above sources of information, and protects us against
any future improvements of password cracking software,
such as John the Ripper.

We explicitly note that in normal operation our password
strength meter hardly leaks information. (An exception is the
unavoidable leakage from the password strength meter itself;
as we cannot prevent the attacker from accessing the pass-
word strength meter f , we cannot prevent him from learning
a limited number of data points of this distribution.) Only
when the n-gram database is leaked, then the distribution, as
well as some bits of additional distribution about the actual
passwords in the database, leak.

One might argue that while the password distribution is
generally known, it is not known for very unlikely passwords,
and the n-gram database might leak these passwords. This is
incorrect since we are adding noise to all n-grams, including
rare ones. In addition, as explained previously, knowing
the n-gram frequencies does not help the adversary to break
unlikely, i.e., strong passwords.

The assumption that the password distribution is known
can be seen as an extension of Kerckhoffs’ principle [10].
We do not assume that the distribution is secret, but only the
password chosen with this distribution are. It also underlies

the definition of guessing entropy (see Equation (1)), which
also considers the optimal guessing strategy.

Finally, we argue that this assumption does not weaken
security since by enforcing a minimum password strength
(similar to [23]) we can still guarantee a minimal guessing
entropy of the passwords. In fact, if we assume that X is a
distribution on passwords with Pr(x)  t for all passwords
x, then the Shannon entropy of X is bounded by

H(X) � � log(t). (2)

By using the results from [16] we can compute a lower
bound on guessing entropy as

G(X) � 1

4

2

H(X) � 1

4t
. (3)

Enforcing, e.g., a maximum probability of 2

�20 yields a
lower bound on the guessing entropy of 218. In other words,
a strong password will remain strong, even if the password
distribution is known. The adversary will be able to compute
its guessing entropy from the distribution, but not more. On
the other hand, weak passwords might be easier to break
since the adversary will be able to optimize his guessing
strategy. However, such passwords should be prohibited in
most services.

5.2 Information and Entropy

The (noisy) n-gram database, when leaked to an adver-
sary, constitutes a noisy channel that transports information
about the stored passwords in the database. In this section
we introduce the notion of entropy and mutual information,
including some basic properties.

The information content of a random variable is measured
in terms of entropy. For two discrete random variables X,Y
with finite domain D = {d

1

, . . . , dn}, Conditional Shannon
entropy is defined as

H(Y |X = x)
def
= (4)

�
nX

i=1

Pr(Y = di|X = x) log(Pr(Y = di|X = x))

and

H(Y |X)

def
=

X

x2X

Pr(X = x)H(Y |X = x).

For independent random variables X,Y , a simple calculation
shows

H(X + Y |X) = H(Y ). (5)

A central notion used to define the transport of informa-
tion on a (noisy) channel is the notion of mutual information.
The mutual information between the input X and the output


