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smart meter background
§ what 

§ networked embedded systems 
§ use state measurement circuits that can record minute- or second-level profiles of energy usage (load profiles) 

§ promise: better efficiency & reliability 
§ dynamic pricing schemes 
§ remote meter reading 
§ improved power outage reporting 
§ load curtailment in emergencies 

§ how:  
§ self-monitoring 
§ self-diagnosis 
§ demand-response 
§ communication 

§ privacy concerns due to fine-grained energy consumption data 
§ monitoring the power consumption of several households to identify temporarily vacant homes and timing burglars' break-ins 
§ estimating the number of residents in a household based on the frequency of power switches turned and the number of 

appliances simultaneously in use 
§ monitoring the location of a resident inside the home based on the type of appliances being used 
§ tracking eating, sleeping, and to some extent exercise habits by monitoring household appliance usage 
§ identifying the TV channel or movies being watched since television power consumption changes with the image being displayed 

§ security concerns of integrity & authenticity of the reported data 
§ underreporting energy usage or inflating the utility bills of a neighbour 
!
!
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Automatic Meter Reading
§ autonomously collects the consumption and status data 

from utility meters (e.g., electric, gas, or water meters) and 
delivers the data to utility providers for billing or analysis 
purposes 

§ AMR Meters 
§ metering engine: measures the consumption 
§ Encoder-Receiver-Transmitter (ERT): 

§ microprocessor & low-power radio transmitter 
§ periodically reports information such as meter ID, meter reading, tamper 

status 

§ AMR Readers: 
§ handheld devices for field investigation or walk-by meter reading,  
§ highly sensitive mobile collectors for drive-by meter reading,  
§ a network of permanently installed collectors and repeaters for reporting AMR 

meter readings in real time
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Figure 1: Generic AMR meters. [Left to right] A
stand-alone gas meter, a gas meter inside gas flow
measuring chambers, and an electric meter.

mechanical dial that rotates at a speed proportional to the
amount of consumption. With the help of electromechani-
cal or electro-optical interfaces, the movements of dials are
converted into digital numbers. The ERT consists of a mi-
croprocessor and a low-power radio transmitter. It processes
the meter reading and periodically reports information such
as meter ID, meter reading, tamper status, etc.

Depending on what meters are measuring, their appear-
ances, communication protocols, and power supplies can dif-
fer. Fig. 1 shows two representative residential gas meters
and an electric meter. Electric meters are conveniently pow-
ered by the main electricity supply line, while gas and water
meters operate on sealed batteries designed to last up to 20
years [14]. The battery constraints of gas and water meters
usually lead to longer intervals between energy reports. We
analyze both electric and gas meters with an emphasis of
electric meters.

AMR Readers. To capture the meter readings and relay
them to a central collection point, one or more AMR readers
(hereafter readers) are required. Readers interpret the sig-
nals and deliver the meter IDs along with other information
to a central collection point. Three categories of readers
are used in the utility industry: (1) handheld devices for
field investigation or walk-by meter reading, (2) highly sen-
sitive mobile collectors for drive-by meter reading, and (3)
a network of permanently installed collectors and repeaters
for reporting AMR meter readings in real time, (aka. fixed
network AMR) [19].

Both handheld devices and mobile collectors require per-
sonnel to walk or drive by locations where the meters are in-
stalled, and total utility consumption can only be updated
as frequently as the walk-by or drive-by events occur. A
fixed network AMR system requires higher infrastructure
investment, but does not need delegated drivers or ‘walk-
ers’ for data collecting, and can provide continuous energy
consumption updates to the utility.

Since we were unable to get full access to mobile collectors
or fixed network collectors, we show our findings using a
handheld collector. Because the main function of all three
types of AMR readers is to collect meter readings, we believe
that our findings provide insight for the other types of AMR
readers.

2.2 AMR Communication Protocol
The communication protocol between meters and readers

is proprietary. Even so, a survey of information from sup-
plier websites and patents [20] provides a rough idea about
the communication protocol, with some information proving
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Figure 2: An AMR transmission is comprised of
two packets. A pilot packet is transmitted approx-
imately 275 ms before a data packet that contains
the actual meter status update.

to be inapplicable to the models of meters that we studied
and some proving to be pertinent. We learned that most
meters operate in the 915-MHz ISM band, use simple mod-
ulation schemes such as on-off keying (OOK) or frequency
shift keying (FSK), and incorporate Manchester encoding
schemes. To avoid packet collision, meters implement fre-
quency hopping, where packet transmissions repeatedly cy-
cle through a pre-determined sequence of channels. Each
packet contains the meter ID, reading, device type, and tam-
pering status.

AMR systems support two types of communication mod-
els: ‘wake-up’ and ‘bubble-up’. Wake-up systems use two-
way communication, whereby a reader transmits an activa-
tion signal to wake up and interrogate one or more meters.
Bubble-up models use one-way communication, whereby me-
ters periodically broadcast the meter readings. Wake-up
models are primarily used in battery-operated gas and water
meters, while bubble-up models are used mainly in electric
meters [14]. Interestingly, we discovered that the gas meter
that we investigated also works in bubble-up fashion.

3. SECURITY ANALYSIS OF AMR METERS
Besides the effort of detecting physical meter tampering,

we have found no evidence that security was considered dur-
ing the AMR meter design. Since the wide deployment of
AMR meters, there has been sporadic exploration into sys-
tem characteristics [21, 10]. However, none of the previous
work has taken a comprehensive look at the deployed system
to determine how an attacker might misuse it.

In this section, we investigate the following issues: (1)
How easy is it to reverse-engineer the communication pro-
tocol? (2) Are spoofing attacks possible?

3.1 Equipment
The primary purpose of our work is to raise awareness

about oft-neglected areas, not to encourage misuse; hence,
we have refrained from disclosing details of the meters being
studied. For our study, we used the equipment from the
following three categories.

AMR Meters. We selected electric and gas meters that
have been widely deployed throughout the United States.
In addition to meters installed in our neighborhood, we ac-
quired second-hand electric and gas meters to conduct ex-
periments both in the lab and outdoor.

Meter Readers. We obtained a generic handheld AMR
ERT module reader used by meter inspectors for field in-
terrogation. This handheld AMR reader works with the
selected meters and can read the meter ID, meter reading,
meter type, and physical tamper status. In our experiments,
we primarily used it for interpreting meter packets. We did
manage to briefly access (1 hour) advanced AMR collec-
tors used by utility companies to test our spoofing attacks.

from [1]

[1] Ishtiaq Rouf, Hossen Mustafa, Miao Xu, Wenyuan Xu, Rob Miller, and Marco Gruteser. 2012. 
“Neighborhood watch: security and privacy analysis of automatic meter reading systems,” In Proceedings of 
the 2012 ACM conference on Computer and communications security (CCS ’12). ACM, New York, NY, USA, 
462-473. DOI=10.1145/2382196.2382246



reverse engineering AMR  
communications

§ reverse engineering requires modest effort 
an ERT reader and programmable radio costing $1,000  

§ no encryption 
§ ‘bubble- up’ meters: anyone can eavesdrop on the real time consumption of 

customers with meters.  
§ ‘wake-up’ meters: consumption data can be eavesdropped on at arbitrary rates 

using activation signals 
§ battery drain attacks: After receiving an activation signal, ‘wake-up’ meters will 

immediately transmit a packet 

§ no authentication 
§ the ERT reader accepts any AMR transmission with a proper packet format 

§ no input validation 
§ When receiving multiple packets with the same meter ID but conflicting meter 

readings, the ERT reader will accept the packet with the strongest signal 
without reporting any warning.
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decoding with and without low noise amplifier
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Meters decoded using LNA only.

Location of the RF sniffer and 
omni-directional antenna. 

M

Meters decoded without using LNA.

20 m

Figure 6: An aerial view of the neighborhood where we performed our eavesdropping experiments. Each
blue triangle or red star represents a group of four or five meters mounted in a cluster on an exterior wall.
Using an LNA and a 5 dBi omnidirectional antenna, we were able to monitor all meters in the neighborhood.
Some sniffed meters may be out of the scope of this view.

area with sparse two-story independent houses and an urban
area with several connected three-story apartment buildings
(e.g., our basic experiment location). Since we were inter-
ested in determining the physical range of our eavesdropper,
we considered a meter within eavesdropping range if at least
one of its packets was intercepted and decoded successfully
over the entire listening duration (1 to 4 hours).

We were able to decode packets from as far as 150m away
in the rural area, and up to 70m in the urban area. We
believe that the range difference is caused by the terrain
variance. The rural area has far fewer obstacles (e.g., build-
ings) to hamper radio propagation (e.g., fading and multi-
path effects). Although the eavesdropping range in other
environments may differ, our results indicate that an at-
tacker should be able to sniff packets in any environment
without entering private property.

Boosted Eavesdropping Range. To boost the range
at low cost, we added a commercially available low noise
amplifier (LNA) [23] to the antenna. The LNA provided
21 dB gain, and increased the eavesdropping range in the
urban area from 70m to more than 300m for meter-E and
from 15m to 70m for meter-G, as summarized in Tab. 1.
Meter-G has a smaller range because it is battery-powered
and transmits at a lower power level.

Fig. 6 provides an aerial view of the physical range of
eavesdropping and the terrain variation. The laptop icon
denotes the location of the eavesdropper. Without an LNA,
the eavesdropper can decode packets sent by meters located
at blue triangles. Once the LNA was added to the basic
setup, we were able to collect data from a larger number
of meters, denoted by the red stars. The underlying prin-
ciple of increasing the receiving range is that an LNA am-

plifies the received signal strength (RSS) of each packet and
thus increases the likelihood of successful decoding. To il-
lustrate, Fig. 7 depicts the RSS of one meter located 15m
from the eavesdropper when an LNA was and was not used.
The usage of an LNA boosted the receiving range by several
multiples, which enabled us to monitor meters further away.
Granted, there are other ways to boost the eavesdropping
range, but our intention was to show that the eavesdrop-
ping range can be increased using inexpensive hardware.

The Number of Observed Meters. To measure the
total number of observed meters, we utilized two RF snif-
fers: a narrowband sniffer monitoring a 4 MHz frequency
band and a wideband sniffer monitoring 12.5 MHz. The
narrowband sniffer received packets from 72 meters without
the LNA and 161 meters with an LNA. The wideband sniffer
could receive 106 meters without an LNA and 485 with an
LNA, which is more than the total number of apartments
in the neighborhood (408 units). We believe some of the
observed meters are located in the nearby region.

Increasing Packet Reception Rate. We use the num-
ber of received packets per hour (pph) to evaluate packet
reception rate. A larger pph maps to a more frequent up-
date on customer energy consumption and a high level of
information leakage.
We observed that an LNA does help to boost the eaves-

dropping range and the number of observed meters, but it

Range w/o LNA w LNA

Meter-E 70m 300m
Meter-G 15m 70m

Table 1: Eavesdropping range for a gas and electric
meters with and without an LNA.



what can one learn from stats?
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Figure 7: An illustration of boosting RSS using an
LNA. We monitored packets sent by a meter 15m
from the receiver.

also reduces the packet reception rates of the meters that
could be heard without an LNA. Ideally, a narrowband snif-
fer that monitors 4 MHz centered at 915 MHz can hear
about 30% of all transmission (40 pph), since meters tend
to transmit around 915 MHz. Without an LNA we could
receive 6.65 pph per meter on average and 27 pph maxi-
mum, while with an LNA, we could only receive 3.96 pph
per meter on average and 27 pph maximum. The addition of
the LNA undoubtably increases the co-channel inteference
(CCI). Hence, our proof-of-concept sniffer sees more packet
collisions.

In addition, a wideband sniffer can slightly improve both
the average pph (7.03 pph) and the maximum ones (30 pph).
The less-than-expected improvement is probably because
the wider the receiving frequency band is, the more likely
concurrent transmissions in different channels collide. De-
tailed distribution of pph for all meters is depicted in Fig. 8.
We will show in the later section that even at a low recep-
tion rate, it is feasible to identify sensitive information of
the residents, such as whether the residents are at home.

A few methods can be used to increase received pph. (1) A
sophisticated decoding scheme. For instance, utilizing cap-
turing effects, we can at least decode the strongest packet
among collided packets, if the RSS of the strongest one is
larger than other packets by a threshold factor [24]. Further,
advanced signal processing techniques such as successive in-
terference cancellation and multi-user detection can be com-
bined with multi-antenna techniques [25] (e.g., beamforming
and space-time adaptive processing [25]). (2) Monitoring the
entire frequency range. A platform monitoring the entire
frequency range can be used to capture packets transmitted
at all channels. However, one would need a very powerful
computer to process data at the rate and/or significant al-
gorithm refinement to decode concurrent transmissions at
different channels, which are outside the scope of our ef-
fort. (3) Dedicating one RF sniffer to monitor one meter.
A narrowband RF sniffer can hop through the same chan-
nel sequence as the target meter to receive packets. Our
experiments show that such a sniffer could achieve 88.5 pph
monitoring a meter that is 10m away without an LNA.

Neighborhood Monitoring. Wireless monitoring al-
lows the gathering of meter readings in an inconspicuous
manner from a larger number of homes. By RF eavesdrop-
ping using a cheap antenna and a low-cost LNA, we were
able to obtain an hourly distribution of power consumption
in the authors’ neighborhood, as shown in Fig. 9. Since the
precision of the wireless meter readings is 160Wh, each bar
in the figure represents 160Wh more consumption than the
one to its immediate left.

Consider, for example, that about 27 meters consumed
less than 160Wh per hour on average, indicating the corre-
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Figure 8: Histogram of received packets per hour
(pph) from each meter using a narrowband sniffer
(4 MHz) or a wideband sniffer (12.5 MHz).
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Figure 9: The distribution of electricity consump-
tion for meters in the author’s neighborhood. 27
meters exhibited less than 160Wh hourly power con-
sumption, indicating 27 apartments unoccupied.

sponding apartment units were likely to be unoccupied at
the time of our experiments. This is an example of poten-
tially sensitive information that can easily be obtained on
this neighborhood scale. In this experiment, we were only
able to receive a few packets per hour (pph) for a large por-
tion of meters. Methods to increase received packet rates are
available and therefore finer granularity data and additional
sensitive information from the neighborhood could likely be
obtained. We will examine this next.

5. INFERRING HOUSEHOLD EVENTS
We now study to what extent it is possible to infer detailed

household activities and events from the obtained data—are
the risks similar to those of smart meters? The lower update
rate of 30s and high packet loss in neighborhood monitoring
may suggest that this is more difficult.
Since no smart meters with fine-grained data are available

in this neighborhood, we address this question by comparing
our data with fine-grained data obtained from direct visual
observation of the meter. To reduce the manual labor re-
quired in this process, we have implemented two automated
visual observation mechanisms of a meter’s on-board LCD
display and infrared (IR) LED using cameras or IR pho-
todiodes, respectively. We considered them as the baseline
schemes for comparing the level of privacy risks caused by
wireless sniffing1.

5.1 Automated LCD Screen Monitoring
The LCD shows the accumulated meter reading in digits

with a resolution of 1 kiloWatt-hour (kWh) and the rate
of consumption by a few ‘dots’, which are displayed on the

1We summarized the highlights of the comparison among
these three methods in Tab. 2

27 meters exhibited less than 160Wh  
hourly power consumption
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Figure 12: An RF sniffer can collect data that suffice
to infer daily routines, which could be misused by
thieves. [Top to bottom] The electricity consump-
tion over a 24-hour period that are collected using
(1) a camera or an IR photodiode circuitry; (2) an
ideal RF sniffer receiving all packets; (3) a real me-
ter being studied; (4) a narrowband RF sniffer that
eavesdrops on one channel only.

any one, not just utility companies, to obtain sensitive in-
formation.

6. DEFENSE STRATEGIES
Automatic Meter Readers are vulnerable to spoofing at-

tacks and privacy breaches because packets are sent in plain-
text. We discuss a few strategies to improve the security and
privacy of meters. The strongest level of protection would
require a redesign of the communication protocol as outlined
in Section 6.2. There are, however, possible jamming-based
defenses for legacy meters that can raise the bar for attacks,
and can be deployed more rapidly at a lower cost.

6.1 Spoofing Defenses for Legacy Meters
A few strategies are available to mitigate RF spoofing

attacks for deployed meters without modifying the meters.
The first one is radio fingerprinting techniques, which can
differentiate amongst transmitters (e.g., real meters or at-
tackers in this case) by exploiting device levels imperfec-
tions [27] or unique channel responses [28]. Secondly, anomaly
detection over a collection of meter readings can identify a
sudden usage change and raise an alarm to perform a spoof-
ing investigation. Furthermore, utility personnel can check
the meter reading in person occasionally to detect spoofing
attacks.

6.2 Cryptographic Mechanisms
A complete solution would use cryptographic mechanisms

to achieve authenticity, integrity, and confidentiality. For
instance, the data packets can be encrypted using standard
block encryption algorithms and augmented with a digital
signature for authentication. As such, an attacker cannot
casually eavesdrop the wireless communication and obtain
sensitive power consumption data of consumers. Without
the private key of the meter, the attacker cannot forge the
signature of meters and claim arbitrary meter readings. It
would also be a good practice to transmit a meter reading
only when needed. For example, letting a drive-by reader
wake up AMR meters appears more appropriate.
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Figure 13: The daily and hourly electricity con-
sumption of a household shows weekly and daily
patterns.

Adopting the standard security practices is an effective
solution. However, implementing such a defense requires
the replacement of AMR meters with new meters or at least
an upgrade of the firmware of all deployed AMR meters.

6.3 Jammer add-on
In systems deployed at the scale of million units, the cost

of installation may outweigh the hardware cost of the de-
vices. We are unaware of any remote firmware update ca-
pability for these meters. Thus, a firmware upgrade would
require skilled maintenance staff to work on each meter. To
substantially reduce the cost of such an upgrade, it is possi-
ble to package a protection mechanism into a separate add-
on device, which can be physically attached and secured to
a meter by lower-skilled personnel than a firmware upgrade.

The central component of this add-on device is a Privacy
Preserving Jammer (PPJ ), which can prevent continuous
RF eavesdropping on packets in plaintext by masking me-
ter transmissions. The PPJ continuously monitors channels
and emits a jamming signal immediately after it detects a
packet transmitted by the target meter to prevent eaves-
dropping. Meanwhile, to allow drive-by or walk-by meter
reading, the PPJ can be temporarily deactivated remotely
by authorized meter readers for a period just long enough
to allow privileged meter reading.

Jamming Parameters. To reduce the complexity and
cost, PPJ utilizes a narrowband transceiver that can listen
or transmit only on one channel. The PPJ cycles through
the meter’s channel hopping sequence and emits a protocol-
specific jamming signal to mask the data packets. Note that
the proper channel sequence can be identified by searching
for transmissions on each channel during initialization, or it
can be acquired as prior knowledge from meter companies.

To effectively obscure AMR data packets, the PPJ trans-
mits over the packet channel bandwidth (200 kHz) (shown
in Fig. 14) for the entirety of a packet (5.8 ms). The jam-
mer power should be larger than the meter’s, but within
FCC regulation. By mounting the PPJ close to the meter,
the eavesdropper’s ability to decode packets becomes inde-

daily routine

from [1]
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AMR security
§ redesign the protocol 
§ against spoofing 

§ radio fingerprinting 
§ anomaly detection 
§ manual checking to detect spoofing 

§ use ‘wake-up’ mode rather than ‘bubble-up’ 
§ privacy preserving jamming
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smart meters
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risks & countermeasures
§ risks 

§ with Non-Intrusive Load Monitoring (NILM), load profiles can be analyzed to 
reveal 
§ individual appliance usage 
§ sleep patterns 
§ number of occupants 
§ times of vacancy 

§ leakage to both utility companies and third parties 

§ countermeasures 
§ Battery-based Load Hiding (BLH) 

§ battery partially supplies the net demand load from the house to alter the 
external load 

§ strategy: flatten the load profile to a constant value as often as possible
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usage information. To the best of our knowledge, this is the
first work to uncover flaws in BLH algorithms.

• We present a novel stepping-based framework for BLH al-
gorithms based on maximizing error between the demand
load and external load subject to battery capacity and charg-
ing/discharging rate constraints.

• We evaluate the four stepping algorithms against the NILL

and BE algorithms on real-world energy consumption, and
show that all of them generally outperforms NILL and BE,
and lazy stepping algorithms consistently outperform other
algorithms.

The insight behind the stepping approach is as follows. We ob-
serve that the measured time series data have two dimensions: time
and value, and the privacy threat caused by smart meters is due to
finer-grained measurement in the time dimension. The key idea
of the stepping framework is to make the value dimension more
coarse-grained. The stepping approach is similar to the idea of
quantization in signal processing, which is the process of mapping a
large set of input values to a smaller set — such as rounding values
to some unit of precision. Because quantization is a many-to-few
mapping, it is an inherently non-linear and irreversible process.

In the stepping approach, the algorithm forces the external load
to be multiples of β, a value chosen based on the battery’s parame-
ters. This results in the external load being a step function. Given a
demand load value, a stepping algorithm decides whether to force
the external load to the level above the demand by charging the
battery or to the level below the demand by discharging it.

We consider three different kinds of stepping algorithms.
Lazy_Stepping algorithms try to maintain the external load un-
changed as long as possible. The Lazy_Charging algorithm tries
to keep charging the battery until is full and then keep discharging
the battery until it is empty. Random_Charging algorithms ran-
domly choose whether to choose to charge or discharge the battery.
Because the stepping approach effectively maximizes the error be-
tween demand load and external load, when one observes a load-
change event in the external load, estimating the amplitude of the
change has an uncertainty range of 2β.

We have conducted extensive experiments, using two data
sources. One source is the data used in [29], which consists of
one-second measurement of data in four houses over a few months.
The other is a dataset [39] that includes electricity data measured
at one-minute resolution in 22 dwellings over two complete years
(2008 and 2009). To measure the amount of information leakage
and compare different stepping algorithms as well as comparing
with BE and NILL, we use several mutual information measures.

We note that the problem is a special case of changing a time-
series data to protect privacy. This setting is different from privacy-
preserving data publishing, where one hides the existence of one
item. Here, the whole time series data belongs to one individual
and needs privacy protection. Similar problems also occur in other
domains such as medical sensors, which can produce time series
data that have privacy implications [18, 1].

The remainder of this paper is organized as follows. Section 2
provides background on smart meters and NILM algorithms. Sec-
tion 3 defines the problem we are solving. Section 4 shows attacks
against BE and NILL that leak appliance information. Section 5 de-
tails the stepping approach and algorithms. Section 6 presents eval-
uation using mutual information metrics. Finally, Section 7 covers
related work in smart meter privacy, and Section 8 concludes. An
Appendix gives formulas for computing mutual information mea-
sures.
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Figure 1: An example load profile with appliance events.

2. BACKGROUND

Smart Electric Meters. Smart electric meters are networked em-
bedded systems that are currently replacing traditional electrome-
chanical residential meters throughout the world. Smart meters
promise novel features such as dynamic pricing schemes [23], re-
mote meter reading [10], improved power outage reporting [21],
and load curtailment in emergencies [14]. As a result of their
enhanced measurement and storage capabilities, smart meters
can maintain fine-grained time series of electricity measurements.
These are known as load profiles. Unlike traditional power meter
measurements, which are at the granularity of months, load profiles
can be at the granularity of minutes or seconds, making it possible
to discern individual rising and falling edges in net energy con-
sumption.

An example of this is shown in Figure 1, which is adapted
from [29]. The figure depicts a four day load profile of a single res-
idence. A specific set of features are highlighted in the smaller box.
These features show an entertainment system, and subsequently a
television turning on, then turning off in reverse order. Given this
type of data, individual appliance events can be extracted as de-
scribed in the following section.

Nonintrusive Load Monitoring. Nonintrusive (Appliance) Load
Monitory (NILM) is a technique for analyzing a household’s net
electric load profile in order to deduce what electric appliances are
being used [16]. The time resolution of these profiles may be on
the order of minutes or seconds, all of which can be obtained using
commercially available smart meters. NILM is nonintrusive in the
sense that individual appliances need not be instrumented. Hence,
such appliance monitoring can be done remotely and without the
knowledge of the household residents.

While there have been numerous approaches to NILM [40, 12,
33, 6, 7, 15, 11, 34, 8, 26], the most successful in residential set-
tings are based on edge-detection [16, 25]. Edge-detection tech-
niques look for significant changes in the steady state current be-
ing consumed by the household. Such changes are characterized
by sharp edges in the electric current consumed by the household.
These edges are then clustered and matched against known ap-
pliance profiles. For instance, if someone in the household turns
on a 40 Watt lamp, then the net current increases by 40 Watts.
Conversely, when the lamp is turned off, the net current drops
by the same amount. The NILM algorithm will detect the pair
of edges with equal magnitude and opposite direction, and match
them against the electric profile for a 40 Watt lamp.

While NILM algorithms do have useful applications such as in-
forming electricity customers about their usage patterns and allow-
ing utilities to verify that customers honor load reduction agree-
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aims at minimizing quantization error, and our privacy protection
goal means that we want to maximize such error, subject to the
restriction that one can quantize a value only to the upper or lower
integer values. One difference is as follows. When the demand load
is 2.9β, reducing quantization error implies choosing 3β. However,
none of the stepping algorithms proposed above would prefer 3β to
2β. As a result, when one observes that the load is 2β at time t, one
knows that the demand load is in (β, 3β). Even if one can predict
that the battery is currently discharging, the possible range of the
actual demand load at time t is still [2β, 3β). Furthermore, when
one observes that next time instant (t + 1) the external load is 4β,
one knows that a load increase event has occurred; however, even if
one could tell that the battery is still discharging, the possible range
of demand load at t+1 is still [4β, 5β), thus the possible range for
the increase amplitude is (1β, 3β), and the observer’s uncertainty
range is 2β.

Therefore, highly accurate load change detection, such as what
we can do for BE and NILL, is impossible for stepping algorithms.
However, it is still possible to recover some information about de-
mand load changes from the external load changes. We use mutual
information measures to evaluate these stepping algorithms.

6. EXPERIMENTAL RESULTS

6.1 Datasets and Experiment Methodology
In our experiments, we use two collections of datasets: one-

second resolution datasets and a one-minute resolution datasets.
The one-second resolution datasets were collected in four houses
and apartments in the north-eastern United States over the course
of one month in spring. Specific details of these datasets can be
found in [29]. The one-minute resolution datasets are from a study
published on the UK Data Archive [39]. This study includes elec-
tricity data measured at one-minute resolution in 22 dwellings over
two complete years (2008 and 2009). Each dwelling was fitted with
a single meter covering electricity use of the whole dwelling.

We note that some of the data are not complete. Small gaps in the
one-second dataset were patched using interpolation as described
in [29]. We refer to these four datasets as S1 through S4.

There also exist some holes where data is missing in the one-
minute data. For each of these datasets, we extract the longest con-
secutive sets of measurements. We chose the six longest segments
to use, and denote them by M1 through M6. The longest, denoted
by M1, is a full year long. The shortest is about 244 days long.

In each experiment, we evaluate batteries of different sizes. For
ease of interpretation, we report battery sizes in Kilowatt hours
(KWh)1 For example, a 1.0 KWh battery can be thought of as de-
livery 1 KW of energy for 1 hour before being depleted. In our
experiments, we assume βc = βd and all the batteries have the
same ratio between capacity and βd. Specifically, we set max dis-
charge rate at 1C, which means that if a full battery discharges at
its maximum rate, it will be discharged to empty in 1 hour.

Before presenting the numerical experimental results, we first
plot the external load outputted by BE, NILL and LS2 on a seg-
ment of dataset S1, in order to give an intuitive feeling of these
algorithms’ behavior. Figure 2 shows the plot; it includes the orig-
inal demand load at the top to felicitate examination. The battery
used has capacity 0.5KWh. We can clearly see that the behavior
of NILL is such that all demands lower than 0.5KW is hidden, but
demand loads above 0.5KW are mostly preserved in the output. In
the output of BE, we observe that the slope from around 30600 to

1While batteries are often specified in terms of Amp hours (Ah),
the results are equivalent.
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Figure 2: Effect of different algorithms on dataset S1 with bat-
tery capacity 0.5KWh.
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ment of dataset S1, in order to give an intuitive feeling of these
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