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dissociative identity disorder (multiple personality disorder)



the risk of the Sybil attack in a nutshell
! inherent vulnerability exploited in any Sybil Attack: it is 

always possible for an entity to present multiple distinct 
identities.

! redundancy lets distributed systems compensate for faulty 
nodes
! Ex: Store data on multiple nodes

! the Sybil Attack undermines redundancy
! need a central authority to determine which nodes are honest
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reasoning model

4

2

2. Formal model
As a backdrop for our results, we construct a

formal model of a generic distributed computing
environment. Our model definition implicitly
limits the obstructive power of corrupt entities,
thereby strengthening our negative results. The
universe, shown schematically in Fig. 1, includes:

• A set E of infrastructural entities e
• A broadcast communication cloud
• A pipe connecting each entity to the cloud
Set E is partitioned into two disjoint subsets,

C and F. Each entity c in subset C is correct,
abiding by the rules of any protocol we define.
Each entity f in subset F is faulty, capable of
performing any arbitrary behavior except as
limited by explicit resource constraints. (The
terms “correct” and “faulty” are standard in the
domain of Byzantine fault tolerance [21], even
though terms such as “honest” and “deceptive”
might be more appropriate.)

Entities communicate by means of messages.
A message is an uninterrupted, finite-length bit
string whose meaning is determined either by an
explicit protocol or by an implicit agreement
among a set of entities. An entity can send a
message through its pipe, thereby broadcasting it
to all other entities. The message will be received
by all entities within a bounded interval of time.
Message delivery is guaranteed, but there is no
assurance that all entities will hear messages in
the same order.

This model has two noteworthy qualities:
First, it is quite general. By leaving the internals
of the cloud unspecified, this model includes
virtually any interconnection topology of shared
segments, dedicated links, routers, switches, or
other components. Second, the environment in
this model is very friendly. In particular, in the
absence of resource constraints, denial-of-service
attacks are not possible. A message from a
correctly functioning entity is guaranteed to reach
all other correctly functioning entities.

We place a minimal restriction on the relative
computational resources available to each entity,
namely that there exists some security parameter n
for which all entities can perform operations
whose computational complexity is (low-order)
polynomial in n but for which no entity can
perform operations that are superpolynomial in n.
This restriction allows entities to use public-key
cryptography [24] to establish virtual point-to-
point communication paths that are private and
authenticated. Although these virtual paths are as
secure as point-to-point physical links, they come
to exist only when created by pairs of entities that
have acknowledged each other. Our model
excludes direct links between entities because a
physical link provides a form of centrally supplied
identification of a distinct remote entity. Also, in
the real world, packets can be sniffed and spoofed,
so the base assumption of a broadcast medium
(augmented by cryptography) is not unrealistic.

An identity is an abstract representation that
persists across multiple communication events.
Each entity e attempts to present an identity i to
other entities in the system. (Without loss of
generality, we state our results with respect to a
specific local entity l that is assumed to be
correct.) If e successfully presents identity i to l,
we say that l accepts identity i.

A straightforward form for an identity is a
secure hash of a public key. Under standard
cryptographic assumptions, such an identifier is
unforgeable. Furthermore, since it can generate a
symmetric key for a communication session, it is
also persistent in a useful way.

Each correct entity c will attempt to present
one legitimate identity. Each faulty entity f may
attempt to present a legitimate identity and one or
more counterfeit identities. Ideally, the system
should accept all legitimate identities but no
counterfeit entities.

pipes

local entity

entities

communication
cloud

Fig. 1: Formal model of distributed environment
adopted from [1]

1.An entity can send a 
message through its pipe, 
broadcasting it to all other 
entities.

2.The message will be 
received by all entities within 
a bounded interval of time. 

3.Message delivery is 
guaranteed, but there is no 
assurance that all entities 
will hear messages in the 
same order.

4.Entities can establish virtual 
point-to-point communication 
paths that are private and 
authenticated.



entity vs. identity
! An identity is an abstract representation that persists across 

multiple communication events. 
! Each entity e attempts to present an identity i to other entities in 

the system.
! If e successfully presents identity i to l, we say that l accepts 

identity i.
! Each correct entity c will attempt to present one legitimate 

identity. 
! Each faulty entity f may attempt to present a legitimate identity 

and one or more counterfeit identities.
! The system should accept all legitimate identities but no 

counterfeit entities.
! An entity has three potential sources of information about other 

entities: a trusted agency, itself, or other (untrusted) entities.
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direct validation of entities (from [1])

! A faulty entity can counterfeit a constant number of 
multiple identities.
! Lemma 1: “If p is the ratio of the resources of a faulty entity to the resources of 

a minimally capable entity, then f can present g=floor(p) distinct identities to 
local entity L”

! lower bound -> upper bound

! Each correct entity must simultaneously validate all the 
identities it is presented; otherwise, a faulty entity can 
counterfeit an unbounded number of identities. 
! Lemma 2: “If a local entity L accepts entities that are not validated 

simultaneously, then a single faulty entity f can present an arbitrarily large 
number of distinct identities to L”
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for indirect validation
! A sufficiently large set of faulty entities can counterfeit an 

unbounded number of identities. 
! Lemma 3: “If local entity L accepts any identity vouched for by q accepted 

identities, then a set F of faulty entities can present an arbitrarily large number 
of distinct to L if either |F|>=q, or the collective resources available to F at least 
equals q+|F| minimally capable entities”

! All entities in the system must perform their identity 
validations concurrently; otherwise, a faulty entity can 
counterfeit a constant number of multiple identities.
! Lemma 4: “If the correct entities in set C do not coordinate time intervals during 

which they accept identities, and if local entity L accepts any identity vouched 
for by q accepted identities, then even a minimally capable faulty entity f can 
present g=floor(|C|/q) distinct identities to L.”
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so what?
if there is no identification authority
! one has to assume that an attacker’s resources are limited
! resource-demanding challenges to validate identities
! conditions:

1.all entities operate under nearly identical resource constraints
2.all presented identities are validated simultaneously by all entities 
3.when accepting identities that are not directly validated, the required number of 

vouchers exceeds the number of system-wide failures. 

are these conditions justifiable as assumptions and 
practically realizable?
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history of countering online Sybils
! computational games and CAPTCHAs to increase the 

cost of creating identities
! detection of Sybils

! based on trust and reputation (Advogato, Appleseed, SybilProof)
! vulnerable to whitewashing attacks, where attackers initially behave honestly

! community detection
! Sybilguard, Sybillimit, Sybilinfer, Tran et al., SumUp, Whanau
! assumption: an attacker cannot establish an arbitrarily large number of 

social connections to non-Sybil nodes ==> Sybil nodes are poorly connected 
to the rest of the network

! use of account-related statistics
! outgoing request accepted ratio, invitation frequency, clustering coefficient, 

etc.
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Assumptions Algorithm Ranking Cutoff Evaluation

SybilGuard [33] Non-Sybil region is
fast mixing [22]

Random walk
performed by each
node

Varying random
walk length

Whether or not
walk intersection
occurs

Kleinberg
network [12]

SybilLimit [32] Non-Sybil region is
fast mixing

Multiple random
walks performed
by each node

Varying number of
random walks and
walk length

Whether or not
tails of random
walks intersect

Friendster,
LiveJournal,
DBLP, Kleinberg

SybilInfer [7] Non-Sybil region is
fast mixing,
modified walks are
fast mixing

Bayesian inference
on the results of
the random walks

Probability of
node being
non-Sybil from
Bayesian inference

Threshold on the
probability that a
given node is
non-Sybil

Power-law
network [24],
LiveJournal

SumUp [29] Non-Sybil region is
fast mixing, no
small cut between
collector and
non-Sybil region

Creation of voting
envelope with
appropriate link
capacities around
collector

Varying the size of
the voting
envelope

Whether or not
nodes are within
the voting
envelope

YouTube, Flickr,
Digg

Table 1: Overview of the properties and evaluation of social network-based Sybil defense schemes.

for choosing the parameter values (e.g., set a parameter to
O(log N) where N is the number of network nodes), there
can be considerable variation in the output from different
parameter settings that follow the guidelines. Given the dif-
ficulty in selecting the right parameter settings, we would
like to compare the schemes independent of the choice of
their respective parameters.

We studied the impact of changing parameters on the out-
put of the Sybil and non-Sybil partitions. We observed that
as the Sybil partition grows or shrinks in response to pa-
rameter changes, an ordering can be imposed on the nodes
added or removed.2 That is, when the Sybil partition grows
larger, new nodes are added to the partition without remov-
ing nodes previously classified as Sybils. Similarly, when the
Sybil partition grows smaller, some nodes are removed from
the partition without adding any nodes previously classified
as non-Sybils. Figure 1 illustrates how different partition-
ings obtained by changing parameters can be converted into
an ordering or ranking of nodes.

Our observation suggests that one can view the Sybil de-
fense schemes as implicitly ordering or ranking nodes in the
network, while the parameter settings determine where the
boundary between the partitions, called the cutoff point,
lies. Changing the parameters slides the cutoff point along
the ranking, but the resulting partitions uphold the ob-
served ranking of nodes. Thus, we can compare the dif-
ferent schemes independently of their parameters by simply
comparing their relative rankings of the nodes.

2.3 Reduction of existing schemes
We reduce each Sybil defense scheme into its component
processes using the model presented in Figure 2. At its core,
each scheme contains an algorithm, which, given a trusted
node and a network, produces a ranking of the nodes in the
network relative to the trusted node. Then, depending on
the setting of various parameter values, the scheme creates
a cutoff, which is applied to the ranking and produces a
Sybil/non-Sybil partitioning.

The schemes that we examine in this paper are Sybil-
Guard [33], SybilLimit [32], SybilInfer [7], and SumUp [29].
For each of these Sybil defense schemes, Table 1 identifies

2While we do not formally prove that all parameters of any
Sybil defense scheme must induce an ordering, it is the case
for all schemes, environments, and parameters we analyzed.

the partitioning algorithm, how this partitioning induces a
ranking of nodes, and how the algorithm parameters deter-
mine a cutoff. We also describe the assumptions the schemes
make about their input environment (i.e., the structure of
non-Sybil and Sybil topologies), and briefly describe the net-
works that these schemes were evaluated upon. A more de-
tailed description of how these schemes map into our model
is included in the Appendices.

Although we only show how our model applies to four
well-known schemes, we believe that it could be applied to
other schemes as well. For example, a recent work pro-
poses a Sybil-resilient distributed hash table routing pro-
tocol [17, 18], by using social connections between users to
build routing tables. The protocol relies on random walks
much in the same manner as SybilGuard and SybilLimit, so
we believe our analysis would apply to it as well. Similarly,
Quercia et al. [27] recently proposed a Sybil defense scheme
that relies on a graph-theoretic metric called betweenness
centrality to calculate the likelihood of a node being a Sybil.
To apply our analysis, the centrality measure can be used
directly to induce a ranking of the nodes.

2.4 Rest of the paper
In this section, we have shown that existing Sybil defense
schemes all work by inducing an implicit ranking of the
nodes. We now take a closer look at these rankings, us-

Figure 2: Diagram showing the processes involved in
a Sybil defense scheme. In brief, the scheme itself
can be split into an algorithm, which when given
a social network and a trusted node, produces a
ranking. The parameters to the scheme are used
to create a cutoff, which defines a Sybil/non-Sybil
partitioning from the ranking.

adopted from [2]

social network-based Sybil defenses

fast-mixing: a random walk of length O(log N ) reaches a stationary distribution of nodes



Sybil nodes and attack edges

honest
nodes

Sybil
nodes!"Edges"to"honest"

nodes"are"“human"
established”
!"A6ack"edges"are"
difficult"for"Sybil"
nodes"to"create

Attack Edges



Sybil nodes can blend with the honest ones
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8,570 requests sent, 3,055 accepted 



Latent Community Model for 
Detecting Sybils

Z. Cai, C. Jermaine, “The Latent Community Model for 
Detecting Sybils in Social Networks,” NDSS ’12



assumptions
1.A special set of size s of the graph’s nodes is known to be 

benevolent; they are called the “seeds”. 
2.Nodes in the same community are either uniformly 

malicious or uniformly benign.
• nodes within communities are (by definition) connected with a uniform density
• “... it seems unlikely that a set of malicious nodes would be able to so 

thoroughly integrate themselves into a community of benign nodes that there is 
no real difference in the connection density between the benign nodes in the 
community and the attackers ...”

• “Even if such an integration did occur, those benign nodes would be so 
thoroughly compromised that labeling them as attackers would not be an 
egregious error.”
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intuition of the LC model
! learned communities positioned in a latent (Euclidean 

space)
! communities near each other tend to have a large number 

of connections
! if the attack communities are attached to the “good” 

portion of the network in a way that is inconsistent with 
other communities, they will tend to be pushed to the 
“outside” of the the latent space.
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LC model
! community: set of nodes with (relatively) dense 

interconnections
! community is associated with a latent position in a 

multidimensional Euclidean space
! communities that are close have many links between 

them
! far apart communities have few links

! Gaussian distribution positions the benign communities 
close to the center of the space

! spherical distribution of attackers that surrounds the 
Gaussian distribution

16



example: Digg

! 594, 426 nodes, 4, 070, 026 undirected edges
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the simplest Gibbs sampler applicable to our model is
beyond the scope of the paper, one key benefit of ap-
plying Gibbs sampling to our problem is that as a well-
studied and mature methodology, there are various stan-
dard “tricks” that can be used to improve the efficiency
of the resulting learner.

5 Experimental Study

This section describes an experimental study of our
models and associated learning algorithms. Our goals
are twofold:

1. To illustrate how the simple LC model from Sec-
tion 2 can be used to analyze a real, medium-to-
large social network, and help a human expert iden-
tify potential Sybils in that network.

2. To see how our LC-based automatic detection
scheme from Section 3 compares with existing, au-
tomatic Sybil detection methodologies.

5.1 Our System

We have implemented all of the algorithms described
in the paper. The multi-threaded implementation con-
sists of 5000 lines of C++ source code. We run our ex-
periments on a Linux server machine with eight, 3.16
GHz cores sharing 33 GB of memory. In our experi-
ments, all hyper-parameters are set as described in Sec-
tion 4.2. The number of communities n = 100 in all ex-
periments. As in our college football example, the prior
F (.) on the latent community positions corresponds to a
two-dimensional normal distribution.

5.2 Utilizing the Simple LC Model

Rather than giving a proper “experiment”, we begin
with an illustrative example, where we show how the
simple LC model of Section 2 (with the addition of the
“seed” idea from Section 3) can be used to detect Sybil
attacks on the Digg website, which is a popular social
news website.

We obtain the Digg data from the SumUp [29]
project. On Digg, people can submit or cast votes on
articles. Based on these votes, articles are ranked. Users
can “follow” and be “followed” by others, inducing a
directed graph. Digg relies on the feedback (votes) of
its users and who follows whom. This creates a strong
motivation for potential Sybil attackers.

There are 594, 426 nodes and 5, 066, 998 directed
edges in the Digg graph. We also have the date/time at
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Figure 4: The positions of communities in Digg. δ de-
notes community density.

which edges are created; while our model as described
cannot make use of this information, it serves as a way
to help validate a discovered attack. Note that the LC
model as described in this paper handles only undirected
graphs. While it would be easy to extend the model to
incorporate directionality, in order to keep things simple
as create an edge between a pair of nodes if there exists
an edge in either direction from one node to the other.
After this preprocessing, there are 4, 070, 026 undirected
edges in the graph, with an average node degree of 13.7.

We use the node “Kevin Rose” as a single seed (Mr.
Rose is the founder of Digg), and attempt to learn the
LC model from the graph. We run our Gibbs sampler
for a “burn in” of 1000 cycles. Estimates for parameter
values are then obtained by taking the average over the
next 100 iterations.

Figure 4 describes the latent positions of the commu-
nities we learn, with their relative density (δ). Looking
at the plot, we immediately noticed that there are 7 com-
munities with δ ≥ 0.3, but of those, only communities
3 and 4 in are distant from the center of the graph (their
densities were 0.4 and 0.55, respectively). Furthermore,
the communities are quite large (311 and 299 nodes, re-
spectively).

It seems quite suspicious to us that these large com-
munities with very high densities would be far from the
center of the latent space. It is easy to explain why
the learned process has placed the communities far from
the center. Figure 5 depicts the so-called “relative edge
densities” (abbr., “RED”) for communities 1, 2, 3 and
4, as well as for a randomly selected community. If
δi is the internal density of community i, and δij is
the probability that an arbitrary node in community i
connects with an arbitrary node in community j, then

adopted from [3]



creation time of edges
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Figure 6: The creation time of edges.

attack” we delete all edges among compromised nodes,
and then group them and the attackers together. We ini-
tially create a clique with m0 nodes (m0 ≤ 6) and add
the remaining nodes iteratively into the network by cre-
ating m new edges to the network. The probability for a
node in the network to be selected is proportional to its
degree. Finally, we add the deleted edges back in. For
the “tree attack”, a random tree is constructed among the
set of attackers and compromised nodes. In the “football
attack”, the attacking nodes and the links between them
are created by replicating the FBS football schedule data
set from Section 2.2 repeatedly. To form connections
between attackers and compromised nodes, the “scale-
free” process is used.

Fraction of Compromised Nodes. This is the fraction of
nodes in the data set that are victims of the attack. We
consider three: 0.01, 0.1, and 0.25.

Fraction of Attackers. This is the fraction by which we
increase the network size when we add an attack. We
consider three: 0.01, 0.1, and 0.25.

Fraction of Seeds. This is the fraction of known, trusted
nodes. We consider: 0.002, 0.005, and 0.01.

Given these variables, for each of the three Sybil detec-
tion methods we construct a suite of tests as follows.
First we define default settings for the last four variables
(that is, for the attack topology, the fraction of compro-
mised nodes, the fraction of attackers, and the fraction of
seeds). For the attack topology, the default is “scale-free
attack”. For the other three, the default settings are 0.1,
0.1, and 0.01, respectively. Then, for each data set, we
consider each of the last four variables in order, and for
a particular variable, we iterate through the three differ-
ent settings, holding all other variables constant at the
default values. This results in (3 data sets ) × (four
variables) × (three settings per variable) = 36 tests for

the LC model. The other two methods do not use seeds,
and so they only have three variables to test, resulting in
27 tests for SI and GK. For each test, we report the ob-
served false positive and false negative rate. The results
are given in Figure 7.

All three methods give some sort of score to each
node, where a high score means that the method is sure
that the node is an attacker. For LC, this score is the
faction of the last 100 Monte Carlo iterations that the
node was in a malicious community. Thus, all must have
some sort of threshold score that is used to flag a node as
an attacker. For LC, we use the natural threshold of 50%.
Both SI and GK also have similar thresholds to control
the tradeoff between false positives and false negatives,
and we also choose their values as 50%. In GK, we use
fadmit [28], where a node is accepted by the admission
controller if and only if the node is reachable from at
least fadmit fraction of ticket sources. In SI, we use α,
a threshold used to control whether a sampled cut is an
attack cut [8]. In order to show how critical these set-
tings are, in Figure 8 we show the false positive and false
negative rates for all three methods as a function of the
threshold chosen, under the default configurations for all
four parameters, for the Irvine data set.

Discussion. There are a few key results. First and fore-
most, over all the experiments, the LC model always re-
sulted in the lowest false positive rate. While it is not
difficult to have a low false positive rate (after all, it is
easy to simply return “no Sybils” every time), it is crit-
ical. In a real-world application environment, no user
is going to accept false positives with any regularity. SI
and GK both show 30% and higher false positive rates
over most of the experiments. We worry that in practice,
false positive rates higher than a few percent equates to
a Sybil detection software being ignored.

Despite LC’s low false positive rate, it also typically

adopted from [3]
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