Secure Information Flow Using Compiler
Techniques

Anna Thomas
University of British Columbia
Vancouver, BC, Canada
annat@ece.ubc.ca

Abstract—Protecting confidential data in computer systems is
an actively researched problem with no complete solution. While
access control and encryption prevent confidential information
from being read or modified by unauthorized users, they do not
regulate the information propagation after it has been released
for execution. An approach proposed to handle this is secure
information flow which has been one of the main areas of
research with respect to security in programming languages.
The applications of this is many-fold in computer security, for
ensuring end-to-end confidentiality in file systems, building secure
web applications, and secure code development. There are dif-
ferent approaches to ensuring integrity by preventing malicious
interactions from low to high variables, and confidentiality by
prohibiting leaks from highly secure variables to public outputs.
They include type based systems, program analysis — static and
dynamic analysis, and taint analysis. This paper is a survey of
existing research work that leverages compiler techniques, and
a critical review with suggested future research directions in the
area of program analysis and tainting for secure flows.

Index Terms—Information Flow, program analysis, dynamic
taint analysis, security

I. INTRODUCTION

Information flow is the flow of information from one
variable to another variable in a program. This happens in
all programs since instructions are dependent on other in-
structions. However, in the security context, certain flows are
not permitted, i.e., the flow from secret data to public output
variables. Information flow control (IFC) is an important
technique for discovering security leaks in software. The two
main tasks of information flow control are

1) confidentiality : confidential data do not leak to public

variables

2) integrity : critical computations can not be compromised

or manipulated from outside, i.e., low variables cannot
maliciously affect high variables.

The applications of secure information flow span various
domains, for example, ensuring security in web applications
using Javascript, building efficient intrusion detection sys-
tems [1] etc. The second task of information flow control
to ensure integrity is analogous to solving some aspects of
intrusion detection. Some of the terms and concepts about
secure IFC to ensure confidentiality in information flow are
described below using an example.

In the widely influential work by Denning [2], variables
in information flow are divided into different security levels
and this is viewed as a lattice with information flowing only

1 int 11,hl,h2;

2 bool 12;

311 = hi;

4 if(h2 != correctpassword())
5 12 = false;

6 else

7 12 = true;

Fig. 1: Example of C code for implicit and explicit flows

upward in the lattice, i.e., from low to high. Variables in a
program can be divided into high(H) and low(L) types based
on the two security levels. The two main types of flow are
explicit and implicit flow. Explicit flow is a direct flow from
high to low security variables, while implicit is indirect and is
control dependent on branches being taken or not taken. In the
example in figure 1, the code 11 = hl is an explicit flow. The
implicit flow is setting 11 to true or false which is control
dependent on the high variable h2.

Other forms of information leaks occurs in timing attacks or
the power analysis attacks where the value of a secret variable
can be inferred from the amount of time or power it takes to
perform the task associated with it. For example, if some time
consuming work is performed based on the condition that the
value of hl is 1, then based on the time taken for the program
to run, it can be inferred that the value of hl is 1.

An important concept with respect to security and infor-
mation flow is non-interference. This policy states that an
attacker should not be able to distinguish between two different
computations based on their outputs, if the only difference
is in their secret inputs. An example of this is entering the
password in a website and the output of this action either
states the password is wrong or authenticates the user. The
current mechanism to reduce non-interference in this case is
to specify that username or password is incorrect, thereby
divulging lesser information regarding the high secret value,
i.e., the password.

Since non-interference is a rather strict property for realistic
programs, another concept called declassification was intro-
duced. It is the controlled release of information based on
dimensions like what information, when it will be released,
who can access it and where it will be released [3]. A
robust declassification prevents attackers from being able to
manipulate the system by learning more than what is presented

to a passive attacker.

Various methods for information flow control have been
proposed and adopted, each of which have their advantages
and disadvantages. Type systems and language design have
been common methods to ensure secure flow [4], but they
generally require non trivial effort from the programmer to
adopt the new constructs. While these techniques are provably
sound, they are conservative. They reject safe programs as
ill-typed and the current research is in improving this false
positive rate.

The second method is program analysis, both static and
dynamic analyses of programs. Static analysis has lesser over-
head compared to the latter, since the analysis is at compile
time, but it tends to be more conservative, and when used
alone, it mostly detects explicit flows. However, while dynamic
analyses have been augmented with other techniques for
implicit flow handling, it does not guarantee non-interference
when used alone, since it considers a single execution of the
program and does not consider all paths. Dynamic analysis
tend to have lower false positives than static analysis since
pointer and array references are resolved at runtime. The
various methods employed is discussed in more detail in
section V.

Another method employed is dynamic taint analysis [5],
which is actually a form of dynamic analysis but, does
not employ language based inference unlike other dynamic
analyses. It can perform precise analysis of information flow
based on an actual execution of program. It runs the program
and observes which variables are affected by predefined taint
values like user inputs.

II. MOTIVATION AND CHALLENGES

There are many applications in security which require robust
information flow control. There has been a lot of recent
research work around secure flow in Javascript based web
applications. It aims at preventing security vulnerabilities of
input flow from untrusted user to security critical operations
and preventing the leakage of confidential information.

There are many challenges involved in achieving secure
information flow. Firstly, the techniques that have been pro-
posed and adopted until now have some trade-off involved,
either with respect to runtime overhead (dynamic analysis) or
conservativeness (static analysis).

Secondly, it is a hard problem to quantify the channel
capacity, i.e., information leakage in terms of the maximum
amount that can be leaked [6]. There are different attack
models possible and the quantitative definition of information
leak depends on the capabilities of the attacker. For example,
the strongest attacker can observe the value of low variable at
each step during program execution while the weakest attacker
can observe only a single low value at some stage in execution.

Thirdly, in languages like Java, there are many libraries that
are imported. The source code for these libraries might not be
available, and hence it is difficult to track information flow
into or out of these libraries. We plan to focus on how current
solutions handle different attack models and various kinds of

ra = ul);
while (£f()) {

»ox = w();

4+ 1if (x>0)

5 b = a;

s else

s }
z

Fig. 2: A sample program and the corresponding PDG (taken from
(7D

attacks common to information flow such as timing attacks
and covert channel attacks.

III. BACKGROUND

Information flow Control (IFC) using program analysis —
static and dynamic analysis, dynamic tainting, program slicing
etc requires some knowledge of terms specific to compilers,
and they are described below. Program analysis can be classi-
fied into three types:

1) Flow Sensitive — This analysis respects the program
control flow and computes a separate solution for each
program point.

2) Context Sensitive — This is an interprocedural analysis
that considers calling context when analyzing the target
of function call. This might not be known in advance
in the case of static analysis when considering virtual
functions.

3) Field Sensitive — When considering aggregate data struc-
tures, each instance of a field is modeled by a separate
variable. This is in the context of pointer analysis, i.e.,
deciding where the pointer actually points to. This cannot
be done precisely at static time.

Each analysis, static or dynamic, can be classified as flow,
context or field sensitive. When the analysis is more sensitive,
it is more precise, but usually at the cost of scalability.

The data structures used in analysis are usually different
types of graphs. The program dependence graph (PDG) is
widely used in static analysis. It models both data and control
flow, between the nodes of the PDG which represent program
statements. An example PDG for a sample program is shown
in figure 2. The dataflow is represented by dashed edges,
while control flow is represented using solid edges. Since it
is derived at static time, it is more conservative and contains
more edges than is actually present during execution.

In program slicing, the backward slice of a variable is all
the variables or statements along the control flow path that
affects the value of this variable. Similarly, the forward slice
of a variable is all statements that this variable affects. In the

example in figure 2, the backward slice of node 4 is {2, 3}
and the forward slice is {5, 7, 9}.

IV. ADVERSARY MODEL

In this section, we consider the adversary model for the
attack on secure information flow. Most of the research done
using these techniques have some trade-offs and they do not
explicitly state their adversary model, i.e., the strength and
capabilities of the attacker. The research work surveyed in
this paper would be critically evaluated against the three
adversarial models described below, and the validity of these
solutions under those models would be examined. We look
into three kinds of models, a limited adversary with minimum
capabilities, another adversary with higher capabilities, and
a model which considers a very different attacker objective,
i.e., using the program characteristics as a covert channel to
transfer information among adversaries.

Limited Adversary Model: The first model considers a
passive adversary, i.e., an observer who tries to guess the
secret or high values based on information leaked or output
available. However, the adversary does not inject malicious
code into the application, and can neither modify nor mutate
program variable values. The objective of the adversary is
being able to gain the secret information or inputs, and hence
affect confidentiality. These inputs can be used for other
malicious purposes. The capabilities of the adversary before
the attack include knowledge of the syntax and semantics of
the language employed in the victim application. After the
attack, the adversary can see the values of the low variables.
However, in this model, the attacker can not see the values of
low variables during different stages of execution.

Broader Adversary Model: This model considers an active
adversary, one who can mutate or modify the low variables
such that it can affect the high variables, during the attack. He
has all the capabilities of the limited model, augmented with
the above code injection or mutation. However, the adversary
does not have the ability to mutate the high variables in
the code, which are protected by other security techniques.
He can also perform side channel attacks by gaining timing
information during the attack. Also, he can observe the values
of the low variables during each stage of execution.

Note that since security by obscurity is never a viable
solution, and following the principle of open design, in both
the models, we can assume that the adversary has access
to the source code of the application. However, this is a
probabilistic capability, i.e., the adversary may have the source
code depending on the context. In some cases, like third party
plugins or web applications, the source code might not be
available even to the user [8]. Recent work in information flow
has looked into both confidentiality and integrity, while the
focus of past research has only been confidentiality. Solutions
that handle both integrity and confidentiality prevent attacks
by the broader adversarial model. We will be analyzing if the
ideas proposed for secure information flow works under these
two adversary models.

Covert Adversary Model: There are some cases where the
adversary could have another objective, i.e., to communicate
secret information between adversaries. This is done through
a covert channel. It is important to note that this is different
from the side channel attack where information is leaked
through some parameters like power or time. Covert channels
are hidden channels used to transfer information between two
adversaries, using storage or timing channels, when they are
actually not allowed to communicate by the security policy
specified.

V. SCOPE AND LITERATURE SURVEY

This section discusses the scope of the survey in terms
of the methodology, the properties of IFC that are handled
and the programming paradigm along with the corresponding
references being surveyed.

A. Methodology

We will be focusing on secure information flow using
different techniques within program analysis, out of the three
methods enumerated for enforcing secure information flow in
section I. This encompasses the following areas:

1) static analysis using different approaches which include
handling of explicit flows [9], and solving informa-
tion flow control using program dependence graphs
(PDG) [7]. PDG has long been used as a structure
for program analysis to handle secure information flow
control. Recent research work at Microsoft Research [10]
has focused on applying static information flow policy to
make privacy control on mobile devices more transparent.
There is similar work done for handling information flow
in i0S [8], but in this model, the static analysis is done
at the binary code level.

2) dynamic analysis which handle implicit flows by con-
sidering control dependence [11], another method using
control flow regions [12], and a novel method of using
analysis on dynamic slices, i.e., slices during a single
program execution [13]. Another interesting work [14]
proposes a preliminary solution to tackling integrity using
dynamic information flow tracking, and is one of the few
works that focus on integrity as opposed to confidential-
ity.

3) program slicing along with static analysis, which refactor
programs into secure and insecure slices [15]. This tech-
nique of leveraging program slicing generally performs
better than static analysis alone since the entire program
is not rejected in case of an insecure flow, but rather
the program is transformed to eliminate such flows [16].
Another interesting work which uses static analysis along
with dynamic slicing, and handles the third adversary
model of covert attacks, is the work of Shaffer at al [17].
A recent work by Hammer et al [18] proposes a solution
for identifying path conditions in Java programs, that can
be used in finding the reason for a particular information
flow, and hence is more precise in identifying specific
instances of invalid information flow.

4) combination of static analysis and dynamic tainting to ei-
ther reduce security leaks in web development languages
like Javascript [19], or to reduce the overhead in dynamic
tainting [20] and hence make it more suitable for secure
flow handling.

5) combination of static and dynamic analyses, which is
now used in secure flows in web applications [21] and
specifically in information flow control in Javascript [22].

We would be looking into if these research works violate
or reduce the effectiveness of the principles of secure design,
namely by questioning the assumptions they make about their
model, the simplicity of their design, i.e., the size of the
trusted computing base, and whether they rely on security by
obscurity. The final point is very relevant to information flow,
since assuming that the adversary does not have access to some
parts of the code, simplifies the problem of secure IFC, but
does not adhere to the security principle.

Metrics that we would be critically reviewing include:

1) Scalability: There is usually no analysis done on the scal-
ability of these techniques, for real world applications.
While this paper [23] handles the quantitative nature
of information leak by bounded model checking and
tests the model on the Linux kernel, we plan to give a
qualitative analysis based on intuition and reasoning for
the scalability of the techniques used above.

2) Precision: Program analysis techniques are usually con-
servative approximations, i.e., they might generate false
alarms but a security leak is usually not missed. We
would analyze the false positives and also make sure
that security leaks are not missed by the techniques
considered. Precision is usually inversely proportional to
scalability, higher precision algorithms usually do not
scale well due to the complexity involved.

3) Practicability: how easy it is to employ these techniques
in industry projects. While we do not plan to conduct any
empirical studies on these techniques, this analysis will be
based on the amount of work from the programmer’s side,
in terms of annotations and level of code understanding
required.

B. Information Flow Properties

There are properties of non-interference and declassification
that have been formally defined in language based security for
information flow, which we would not be focusing on. These
properties can not be theoretically proven in program analysis
given the false positive rate. This is essentially the trade-off
with respect to language based or type system based IFC,
which have the disadvantages of being tough to use practically.

C. Programming Paradigm

Our survey would be focusing on single threaded programs
at source code and bytecode level. We plan to study the
nuances involved in the program analysis done at the bytecode
level. As a starting point, we would look into how this is
handled at the Java bytecode level [24]. There is research
done for information flow in multithreaded programs which

we would not be surveying since there are inherently different
concepts that need to be taken care of. The programming
paradigm would be imperative with some focus on secure flow
in object oriented languages [25]. This work uses the program
slicing technique to characterize information flow that pertains
specifically to object oriented programs in Java. We would not
be considering other paradigms like functional languages.

In the following sections, we will consider the solutions pro-
posed using various high level techniques like static analysis,
dynamic analysis, program slicing, tainting, and combinations
of these techniques.

VI. STATIC TECHNIQUES

Static analysis is one of the program analysis techniques
that have been used for various applications like program
understanding, debugging, finding critical regions of code etc.

It has also been widely used in information flow control.
However, as with all other applications, static analysis tends to
be conservative, i.e., there is higher number of false positives,
but static analysis techniques would never miss an information
flow leak that it is meant to protect against. The high rate of
false positives is because static analysis tends to be conserva-
tive, since all information about a program will not be available
at static time. However, static analysis tends to have a much
lower overhead than dynamic analysis, which considers each
execution, and hence is more precise. Moreover, the nature of
static analysis prevents it from being used in systems where
information flow policies are inherently configurable.

Static analysis has been used to handle explicit flow of in-
formation in programs. Different techniques employ program
dependence graphs to handle IFC. There is ongoing research
work to reduce the number of false positives and hence make
the analysis more precise.

Liu et al [9] employed a static analysis technique called
fragment analysis developed by Rountev [26]. The benefit of
this technique is that it can consider software components,
and hence can work on analysis of partial programs too. They
developed this technique for Java programs and components.
Their threat model assumes that the given Java classes in a Java
component can be trusted, but the client code built on top of
it cannot be trusted. Hence, the problem involves identifying
invalid flows, i.e., flows of sensitive or secret variables from
the trusted component into untrusted client code. This handles
the problem of confidentiality in IFC. They handle software
components or partial code by having a dummy main method
as a placeholder that simulates the flow between client code
and the trusted components. In this work, already builtin Java
components and classes are part of the trusted computing base,
and this is a valid assumption, if there are techniques to thwart
injection of malicious code into these predefined Java libraries.

However, while the analysis is context sensitive, and does
not require any annotations from the programmer, we believe it
suffers from precision since the dummy main method which
is added, serves to approximate all possible clients that can
be built on top of the software component. With respect to

scalability there might be issues since the underlying point-
to analysis takes a lot of time even for small benchmarks
like Gzip. Points-to analysis is a type of pointer analysis
that tries to approximate what objects or variables a given
reference field may point to. The authors show that their
static analysis also handles integrity, i.e., flow of information
from untrusted component to trusted component which might
cause malicious manipulation of the software components.
Moreover, it performs better, with cubic complexity, than some
other techniques with type based solutions.

A novel technique that seems promising in terms of static
analysis for IFC was developed by Hammer et al [7] which
leverages path conditions in program dependence graphs
(PDG) for IFC in Java programs. PDG has the advantage
of being flow sensitive, and hence it is more accurate in
terms of avoiding flows that can never occur at runtime. This
analysis is flow, context and object sensitive. However, this
solution will not be valid in the broader adversary model, since
PDGs cannot protect against side channel attacks like timing
or power leaks. The model has the advantage of taking care of
leaks through the covert channel of uncaught exceptions. The
context sensitive slicing takes care of maintaining security lev-
els from the formal parameters to the calling function. In terms
of scalability though, we think the path conditions will be a
major bottleneck for large programs, containing legacy code
and interactions between small trusted components and large
untrusted third party code or libraries. The implementation
was tested on medium sized programs in Java. This analysis
will not work in other languages like C and C++ which
require pointer analysis and makes the analysis infeasible or
inaccurate. However, there is potential in extending PDGs to
consider a general pointer analysis technique that would work
for languages that use pointers.

Recently there has been ongoing research for secure in-
formation flow for third party applications installed in the
mobile OS, with the advent of smartphones, Major players
like Apple, Google and Microsoft have actively looked into
solutions for their respective mobile operating systems and
third party application framework. The solutions for detecting
information flow leaks in such applications have ranged from
dynamic information flow tracking in the case of TaintDroid
for Google’s Android OS, to static analysis in the case of i0S
and Windows Phone. We now consider these two solutions
for this problem, that employ static analysis techniques. It is
important to note that research in this area focuses mainly on
the confidentiality aspect of IFC, and does not handle integrity.

A recent work done by Xiao et al at Microsoft Research [10]
employed static analysis to detect flows of private information
of the users of Windows Phone, to the public web, via third
party applications that the users install on their phones. The
motivation behind this work is to enable users to transparently
control their privacy and hence provide security to the users.
The adversary in this model is the application developer of
the third party application whose objective is to gain secret
or classified information of the customers who download that
application. Moreover, since this work is inherently different

from other work done using compiler techniques to guarantee
secure information flow, we delve into its details.

A key point to note here is that in this context, invalid or
insecure information flow is defined as information that leaks
to the web, without explicit permission from the users, and
also flows that tamper with the information before presenting
to the web. The latter is necessary, since if the information
is tampered, the user might be deceived that the data flowing
to the public is potentially harmless to the user. For example,
some pixels in a photo that is uploaded by the user through the
application, might encode the user’s password on some website
or other sensitive data, that the user would definitely not permit
had he/she known of the leak. We think that this might be a
conservative over-approximation, since some applications tam-
pering with data posted to the public domain might be benign,
i.e., they do not contain any secret variables. For example,
applications that are low on budget or performance, have a
higher variation in the peak signal-to-noise ratio (PSNR) when
displaying the images — rather than displaying images in HD,
and this technique might classify it as tampered data.

It is not considered an invalid flow, if the users allow the
application to publish their classified information on the web
(such as sharing on Facebook or geolocation in Twitter). The
static analysis relies on the fact that the source code of the
application is available, and is also viewable by the users who
try to install the application. However, this might be specific
to how Microsoft makes the third party applications available.
Hence, this solution might not be generalizable to other mobile
devices that leverage third party applications.

After the invalid flow is detected, there is a user dialog box
presented, asking if the user is okay with this information leak
when installing the particular third party application. This is
analogous to how Facebook handles third party applications,
where users are explicitly asked for permissions before in-
stalling the application. However, here the exact information
leakage is also presented to the user, and hence the user can
make a more informed decision. The language they consider
is the TouchDevelop language, and it is transformed into a
simpler model, where some values might have a mutable and
an immutable part. The information flow characterization is
done separately for each part for all those values.

The analysis is done on each basic block in the code, and
the analysis also considers implicit flows. The results, i.e., how
information flows from sources to sinks, are presented at the
coarse granularity of the entire script, and at a finer granularity
for each procedure. Moreover, this is one of the few papers
in information flow analysis, that does a usability study on
user experiences on using the new privacy control mechanism
available. This is however necessary in this context, since
there is a much wider range of customer base compared to
the single programmer or security expert who usually handles
information flow leakages. Moreover, the level of expertise
between various members of the customer base, and the
security expert might be completely different. This work does
not protect against the covert adversary model, but works well
for the limited adversary model as well as handling implicit

flows. However, side channel attacks are not handled.

With respect to scalability, the analysis will not scale when
considering large code bases, since the analysis is done even
at very fine granularity of procedures. There might be much
higher number of false positives, since the implicit flows con-
sidered statically, is a conservative analysis. This in turn might
lead to poor user experience, with users not downloading some
third party application due to false alarms about leakage.

The second major work with respect to static analysis is
the PiOS [8]. This differs from the work done in Windows
Phone, since the analysis is done at the binary code level,
and the source code is unavailable. It attempts to identify
all the information leaks from the third party applications.
However, the solution is very specific to the mobile device
OS architecture, like the Objective-C language, and the Mach-
O binary format. It involves constructing the control flow
graph (CFG) from the objective binaries, which is not very
straightforward due to the intricacies involved in the program-
ming constructs of Objective-C like the dynamic dispatch,
handling class hierarchies, and taking care of external class
dependencies.

The second step performs a reachability analysis to see if
there exists potential paths in the CFG where the information
flows from the source nodes to the sink nodes(output chan-
nels). Finally, dataflow analysis is done on the potential leaks
found in the second stage, to improve precision.

We believe there might be more avenues to use static
analysis for secure information flow, apart from the work
discussed above. It is interesting to note how static analysis
techniques have adapted to different models, like the absence
of source code and handling properties of object oriented
languages.

VII. DYNAMIC TECHNIQUES

Dynamic analysis is also used in information flow control,
and it is usually more precise than static analysis with respect
to false positives, since it considers one actual execution.
However, when used alone, they can not consider implicit
flows, and hence can lead to some false negatives. This is
because of the same property which is its advantage with
respect to low false positives, i.e., it is based on one actual
execution — ignoring other control paths can lead to missing
implicit flows caused by omitting variable assignments. Hence,
dynamic techniques are usually preceded by some sort of
static analysis or program slicing technique. Current research
focuses on the tradeoff involved in precision versus runtime
overhead. While there is research done that focuses on just
explicit flows, this is not surveyed in this paper, since such
techniques are essentially imprecise by nature.

Bao et al [11] developed an interesting metric in dynamic
analysis which aims at being precise, while still reducing the
runtime overhead considerably. The metric is strict control
dependency (SCD), instead of considering all control depen-
dency or data dependency. An example of strict control de-
pendency versus a normal or non-strict control dependency is
shown in figure 3. In the case of non-strict control dependency,

output_lowl, output_low2;
//Strict Control Dependency

1 int secretl, secret2,

2 if (secretl == 10000)

3 output_lowl = 1;

4

5 if(secret2 > 10000)
Dependency

6 output_low2 = 1;

//Non-Strict Control <«

Fig. 3: Example of C code for strict versus non-strict control
dependency

even when the information is leaked, there is much lesser
damage done, unlike the case of strict control dependency.

The authors use static analysis to identify control dependen-
cies that are strict. However, for higher precision in handling
implicit flows, they develop runtime instrumentation for SCD,
which has considerably lower overhead than all control or
data dependencies. Moreover, when considering precision for
lineage tracing, the false positives and negatives are much
lower than that of data or control dependencies,

While the authors have explained its applications in lin-
eage tracing and tainting, they are not very clear on how
it could be used in information flow analysis. We believe
this technique seems promising for dynamic information flow
analysis (DIFA), but using this technique alone might lead
to higher false negatives. This is because, when the attacker
has higher capabilities, like in the case of the broader attack
model, where all values of the low variable can be seen at
all stages of execution, even a small amount of leakage can
make the system vulnerable. In other words, not all non-strict
dependencies can be ignored. In the context of the security
lattice, and varying levels of security, it would make sense
to quantify the non-strict levels, rather than having only two
levels — strict and non-strict. With respect to scalability, it
might not scale to large programs, especially since the runtime
instrumentation uses stack to keep track of SCD. However, to
bound stack growth, in case of nested SCD, only the nearest
SCD to the statement in question is pushed into the stack.
This solution is directly related to solving the case of implicit
flows, or omission flows, where the omission of a variable
definition is dependent on a branch condition. For example,
the taken branch might have defined a particular variable,
while the false condition of the branch would omit the variable
definition. Hence, there is an implicit dependency between the
branch predicate and the variable definition. There might be
some potential reduction in these false negatives, if we can
quantify how much information can be leaked, and use that
value as a basis for detecting if non-strict dependencies should
be included in the invalid flow list.

This is what has been handled in the work by McCamant
et al [12], where they quantify dynamic information flow as
network flow capacity. This is one of the very few works that
mention the solution with an explicit adversary model, which
considers the third model — the covert adversary model. The
adversary’s objective in this attack is to use the program as a
covert channel, to communicate messages to another adversary

using the program’s secret input. Hence, the capability of the
adversary is the knowledge of input distribution, the source
code, semantics of the program, and the ability to use the
program for this purpose.

They motivate the problem by stating that declassification
cannot be avoided completely, and there will be flows from
secure to public outputs. The idea is how can we quantify
these flows to distinguish between harmless and harmful flows,
and they do this by computing the maximum flow between
inputs and outputs using static control flow regions. When
the adversary compromises the application for using it as a
covert channel, this solution bounds the information flow —
both implicit and explicit flow — to the public output.

Masri et al [13] came up with a novel forward slicing
algorithm during dynamic information flow analysis to detect
and debug insecure information flows. The tool developed as
part of this work can handle configurable information flow
policies, and because it uses forward slicing, it is more useful
for interactive debugging of detected invalid flows. It also
supports unstructured control flow, in the form of break and
return statements, but this is true of most dynamic analysis,
since control flow information for such code is more precisely
handled during runtime execution. The analysis requires a
static analysis phase that computes the control flow graph.

This information is used in computing the direct dynamic
control dependence and makes the algorithm more precise
compared to other dynamic slicing algorithms. They also use
a stack to store the predicates, within the dynamic scope, that
have a direct influence on the secret statement in question. It
can optionally detect implicit flows through a static analysis
phase, that transforms the detected implicit flows into explicit
ones. However, this might have higher chances of false pos-
itives. Moreover, this method would not work well with the
broader adversary model we consider in this survey paper,
since flows enabled by the adversary from low variables to
high security variables — through possible mutations — are not
handled in this technique.

Al-Saleh et al [14] research work focused on using dynamic
information tracking for solving the second task of information
flow control, namely integrity. As can be seen of all the
work that has been surveyed until now, research on IFC
has focused on solving the confidentiality task, but focus
on integrity has been very less, i.e., solutions do not work
on protecting against the broader adversary model, where
the attacker is an active one. The authors come up with a
preliminary way to tackle dynamic information flow tracking
and make it applicable to intrusion detection systems. It is
important to note that this work leverages tracking of dynamic
information flow, rather than analysis of these flows. The
tracking is done using tainting, and the metric used to quantify
the dependencies is mutual information between sources and
sinks. However, the taint tracking mechanism is developed
in the architectural level, and hence the storage overhead
associated with the tags is quite high. Moreover, as the authors
admit, mutual information between sources and sinks could
falsely quantify the actual information flow between them.

Finally, the accuracy of the system has not been quantified
with respect to false positives and false negatives. This makes
it very questionable with respect to its application for IDS,
where reducing the false alarm rate is a major requirement for
a good IDS.

As an extension to the prior work done by Masri et al [13],
they use the tool they built to enhance the capabilities of an
application based IDS [27]. They use the concept of an attack
signature to define some subset of flows that are explicitly
not information leaks, but they are a subset of the flows that
define the attack. These attack signatures can be identified by
their tool. To support the detection of unknown attacks using
anomaly based IDS, they use the information flow profiles
along with cluster filtering, to identify the attacks. Cluster
filtering clusters together the profiles that are similar, and this
helps in reducing the false positive rate. They also suggest
profiling the detected attacks offline, and seeing if they actually
represent an attack. If it is so, recovery procedures are initiated,
and that particular attack signature is added to the set of
insecure information flow patterns.

However, like all IFC techniques that try to improve on in-
trusion detection techniques, the inherent issues with dynamic
information flow analysis makes the solution not viable in IDS
that have much stronger adversary models than even the broad
adversary model we consider in this survey paper. We would
need more advancement in dynamic information flow analysis
to make it a viable solution for IDS.

VIII. PROGRAM SLICING

Static analysis can be extended with program slicing to im-
prove precision in terms of reducing the false positives. Similar
to the case of intrusion detection, if the false positive rate is
quite high, the technique would be rendered infeasible. This
survey paper looks into how program slicing is leveraged to
solve smaller sub problems within information flow analysis,
like refactoring and transformation.

Cavadini [16] developed a technique called secure slicing
that has the important advantage of being able to transform
insecure code to secure code at static time, thereby avoiding
another issue with static analysis, i.e., the rejection of whole
programs because of small regions of code being insecure.
However, this technique focuses only on the confidentiality
aspect of secure IFC. An invalid flow is defined as flow of se-
cure data information into public channels, without the explicit
permission for declassification. The solution can be split into
two phases — computing the program slice and performing
program transformation on the secure slice obtained in the
previous phase. Program slicing is done by computing the
backward slice of a variable and checking if there is a flow
from a variable marked as high or secret into a low output
channel or variable.

However, due to refactoring in terms of program trans-
formation, there is no strict guarantee that the semantics of
the program would remain unchanged. Hence, we believe this
technique cannot be used in critical legacy applications where
more precise techniques combining dynamic analysis and

tainting should be used. In terms of program transformation,
they consider two different approaches:

1) instrument code with skip statements instead of insecure
public output statements (this is similar to No-Ops in the
architectural level)

2) Separate insecure flows into direct (data dependent flows)
and indirect flows (control dependent flows), and place
skip statements in sinks of indirect flows, while keeping
some informational output or skip statements at the sink
of direct flows. This makes sure that even if the adversary
has access to the refactored source code of the program,
he cannot figure out the values of the secret input vari-
ables. The informational output statements can be print
statements that displays to the user that he cannot see the
value of secret variables. This explains why informational
outputs are placed only in the case of direct flows.

The technique also handles code that has been intentionally
declassified, since the technique requires the previous phase
to specify the set of invalid flows (through the PDG). The
author claims the scalability of the technique in Java. However,
annotation is required for other languages which do not
have tools for handling dependence analysis. The annotation
required would include specifying the high variables and
variables that can be declassified. We cannot say whether this
technique would actually scale to real world applications since
it was tested on case studies like double-blind peer-review and
another case of intentional declassification.

Smith and Tober [15] proposed a technique to refactor code
into high and low security components using program slicing.
The technique consists of three stages, namely identifying
sensitive or secret code, refactoring them into high security
component and adding declassification statements for handling
explicit declassification from the high component into the low
component part of the program. The first stage is handled by
a static program slicer that considers an IO centric approach,
i.e., IO channels have to be initialized to either belonging
to the high or low category. The technique however does
not consider integrity since only the forward slice of a high
security input is considered. In other words, the information
flow or backward slice of low security inputs are not handled.
Another disadvantage of this technique is that it requires the
programmer to explicitly handle declassification after the code
has been factored into high and low slices. Declassification
is a known hard problem, especially since it requires careful
analysis and understanding of the code. This could also lead
to possible leakage of information, if the declassification is
not handled correctly. The authors specify some principles to
help in correct declassification, but as we know, relying on
programmers to declassify, might lead to more vulnerabilities,
than already existing ones.

At the end of the refactoring phase, the high security com-
ponent releases only high output information, and the declassi-
fication to the low security component is done through public
access methods. Annotations required from the programmer
include properly labeling data at the input points, placing pub-

lic methods for declassification, and placing checks to make
sure that high outputs are only within the high component.
The primary issue with refactoring code automatically is that it
would result in code that would be more difficult to understand
or maintain. It is obvious that as code becomes more complex,
the chances of vulnerability increases. One advantage of this
technique is that it handles possible information leaks through
covert channels like debug or log output channels, which might
end up inadvertently revealing enough information about the
sensitive inputs. This solution of refactoring will not scale
when considering more than two security levels, i.e., the
different levels according to the security lattice. In terms of
general scalability when considering only the two levels of
high and low, the technique will not work well, since it
requires a lot of annotation and careful understanding of code.

In terms of precision, these dynamic techniques would be
more precise, since it prunes away more invalid flows that
program slices, which are an extension over the static analysis.
With respect to the adversary models, both the techniques
would definitely fail against the broader adversary model,
since both techniques do not consider integrity. Moreover, the
second technique’s threat model assumes that the IO channels
are secure, which does not work against the adversary who
uses the 10 channel as a covert channel. It can be inferred that
both the techniques would need advancements in automating
the handling of declassification, which is a hard problem.

Shaffer at al [17] proposed a solution using static analysis
and dynamic program slicing, to handle information flow
leakage as used by the covert adversary model. The solution
handles both covert channel and overt flaw. An overt flaw
occurs either by a direct data dependence or an implicit control
dependence, which transfers the value from a high variable to
a low variable. The implicit flow is handled using dynamic
slicing techniques.

The covert channels they specifically consider are the timing
and the storage channels. The point of interference of a system,
is some internal resource that is viewed by an adversary for
two purposes:

1) knowledge of whether the second adversary has commu-

nicated some information
2) the information that the second adversary has communi-
cated

A program is transformed manually into a base program,
which is an abstraction of the original program and is written
in a domain specific language called Implementation Modeling
Language (IML). Apart from the fact that this raises huge
concerns on scalability, there is also the issue of accuracy,
since as the authors mention, there might be some covert
channels that are lost in the transformation.

An invariant model that should be satisfied by the program
under all conditions should also be manually stated by the
programmer. The invariant model and the base program is
compiled into a language called the Alloy Specification lan-
guage, and the representation formed is called the domain
model. It is used in formulating the dynamic slice. The
dynamic slice is limited by the scope variable, that says upto

which variable, the slicing needs to be done. The slicing done
is a dynamic backward slice.

Also, the domain model contains the implementation model,
which specifies how the timing and storage covert channel
attacks can be caught. For example, if a variable definition
occurs before another variable definition, this is captured using
a system clock and a keyword called before, which can be
used to check which definition occurs first.

This is different from the side channel timing attack, since
the timing attack is used to get a high variable value which
has leaked inadvertently due to some timing differences.
Similarly, using an example of the storage covert channel
attack, they show how the specifications can be written to
avoid information transfer using a common file, that is marked
full by one adversary, and the other adversary observes the
value of the variable full to figure out what the first adversary
was communicating.

However, apart from the obvious issue of scalability, another
problem with this technique is that the onus of understanding
the covert channel is placed upon the programmer or security
expert, after the framework has detected a covert channel.
It can be inferred that as the covert channel is used to
transfer more bits, for example through looping constructs,
the complexity of the checks to capture these covert channels
also increases. Moreover, it does not handle the integrity of the
system, namely it does not shield the system against malicious
flows from low variable to high variables. We believe this
technique might be one step forward in the direction towards
formalizing solutions that handle the covert adversary model.
However, there still exists a lot of work in terms of handling
real world programs, and taking care of many more corner
cases.

Another work characterizing information flow in object ori-
ented programs [25], with Java as the reference, also uses pro-
gram slicing technique. The author developed the concept of
a comprehensive Object-oriented Program Dependence Graph
(OPDG), that has edges representing polymorphic flows, var-
ious class and interface dependencies, and other concepts like
inheritance and encapsulation. With respect to Java, there are
four kinds of information flows that are identified — statement-
level, method-level, class-level and package-level. The analysis
involved identifying the basic components and computing the
backward and forward slices, using the OPDG. However, this
work is mostly theoretical analysis, and no concrete implemen-
tation in the form of a usable tool exists. This work can be
used as a general guideline when characterizing information
flow in OO programs. Also, the work seems to be more
applicable in the context of error propagation, and testing,
rather than satisfying adversary models. We think this work
can be modified to suit the needs of secure information flow,
by using the metrics that can be computed using this technique
— width of information flow and correlation coefficient.

IX. TAINTING AND STATIC TECHNIQUES

Tainting essentially marks untrusted inputs as tainted and
tracks the flow of taints through the system. This is the reverse

of the information flow confidentiality criterion, which checks
if information flows from secret variables to public variables.
Hence tainting tries to enforce the second criteria of secure
information flow, namely integrity. However, while tainting
has numerous applications, dynamic tainting has the significant
disadvantage of high overhead since it requires tracking at
runtime the taint of the secret values, and for doing so, the
usually followed technique is at the finest granularity — byte
level tracking. This is because, for unsafe languages like C,
alias analysis is not very precise, and hence increasing the
precision of the taint mechanism requires resorting to fine
grained granularity. A term common to tainting is stability,
which is a metric quantified as the variables in the program
that are tainted during the tainting process. Hence, a tainting
technique with extremely low or weak stability is one that
taints almost all variables in the program, thereby introducing
false positives. The solutions surveyed in this section try to
negate these problems associated with dynamic tainting, by
reducing the overhead using static analysis.

Chang et al [20] proposed a solution to detect invalid flows
based on some predefined security policy, using static dataflow
analysis and dynamic tainting. They cover more attacks that
traditional taint-based methods, and at a much lower runtime
overhead. This is because, in case the static dataflow analysis
manages to find that there are no invalid flows, there is no
runtime overhead involved. However, this is at the cost of
increased annotation required by the programmer who needs
to thoroughly understand the nuances and the design of the
code, and a security expert who can specify the security policy
this application should adhere to at all times.

Another disadvantage of this system is that the instrumen-
tation added to the code, to check if the security policy
is invalidated, guards the system only against that specific
security policy. The security policy is specified in a preex-
isting annotation language called Broadway, and the authors
claim that all the required policies can be added by some
security expert initially. This seems to be analogous to the
signature based intrusion detection system, with the policies
being the signatures. Moreover, it should be noted that the
overhead associated with the instrumented code is not directly
proportional to the complexity of the security policies. The
authors claim this to be an advantage, stating that it actually
depends on various factors like whether the instrumented code
is on the critical path, and other runtime properties. However,
we believe that this could be a disadvantage since determining
the overhead in systems that are critical to such metrics, might
be hard to do, unless the programmer has a good understanding
of the underlying system, along with how the instrumentation
and static analysis works. In other words, for such systems, the
programmer would have the additional burden of figuring out
the entire working of the application being protected, and the
static and dynamic analysis involved. Finally, this system does
not handle implicit flows and side channels through timing
attacks. Hence, it would not protect this system against the
broader adversary model that we consider.

In terms of low level implementation details, the underlying

pointer analysis is client-driven, and the client here is the
dataflow annotations, which use the results of the pointer
analysis. Also, the taint system is tag based at byte granularity.
This would have higher overhead compared to other coarse
granularity schemes. The authors admit increasing the size of
the trusted computing base (TCB), by including the compiler,
the annotated security policies, and the instrumented code that
is added as runtime checks to validate that the application
adheres to the security policies. It seems reasonable to consider
the compiler as part of the TCB, from a pragmatic standpoint.

Tripp et al [19] developed a taint analysis mechanism for
web applications, specifically written in Java. They handle
the scalability issue and runtime overhead associated with
taint analysis, to the point that it was evaluated against
real industrial benchmarks. They introduce a much smaller
slicing algorithm, namely the hybrid thin slicing algorithm
— flow-insensitive dataflow analysis through the heap, and
context- and flow- sensitive dataflow analysis through the
local variables, thereby reducing the variables tainted during
the analysis. They also take care of the dual purpose of
confidentiality and integrity, while other taint analysis solu-
tions have primarily focused on integrity. Another interesting
aspect about the paper is that they come up with general
models to handle complex flows, when importing libraries and
other cases of pointer analysis. This is specifically to handle
scalability issues.

However, they do not consider implicit flows and the
broader adversary model where the active attacker could
compromise the system, if the attacker can perform side
channel attacks like the timing attacks. The results of this
paper are very implementation specific and geared towards
web applications written in Java. It would be interesting to
know why the server side was chosen, when there are a number
or information flow leak vulnerabilities in client side scripting
like PHP and Javascript. Moreover, it is not clear how their
technique evaluates with respect to stability, since they only
look at false and true positives.

X. STATIC AND DYNAMIC TECHNIQUES

We now look into solutions that leverage a collection of
techniques for characterizing information flow leakage — static
and dynamic analysis, to improve preciseness and reduce
runtime overhead. We specifically analyze the application of
information flow, as applied to web application security and
Javascript.

Lam et al [21] developed a comprehensive solution with
static and dynamic information flow analyses, and model
checking, to capture a wide range of vulnerabilities plaguing
web applications. The invalid information flow needs to be
specified by the programmer or security expert in a high level
language called Program Query Language (PQL), which can
capture most invalid flows easily, and the programmer can
also specify the corrective actions to take if the invalid flow
is detected.

The static analysis is done using context-sensitive, flow-
insensitive pointer analysis. It should be noted that all invalid

10

flows captured, depends on the flows included in the program
specifications. The authors give an example of the PQL
specification for the SQL injection attack. However, we think
the fundamental limitation of this approach is that it can only
capture the flows explicitly mentioned by the programmer.
Hence, as the security design is only as strong as its weakest
link, it is obvious that new information flow attacks, or even
covert channel attacks cannot be captured.

The static analysis is done to reduce the runtime overhead
associated with dynamic analysis, and since it is conservative,
there are no chances of missing out on potential invalid flows.

The runtime instrumentation for dynamic analysis is done
only on program points identified by the static analysis. The
program is checked to see if the errors are corrected, at the end
of each of the phases. This is effectively pruning away the false
positives that are generated. Moreover, as the authors claim,
this would help the relatively naive programmer to capture
invalid flows. However, the catch here is that the programmer
should make decisions regarding which flows are invalid, and
this would require an understanding of the threat model and
the system.

They also develop a model checker which is used in the
final phase, and it is designed specifically for applications
using Apache Struts and JSP. However, the inherent issue with
model checking is scalability, since it runs for each possible
representative input. The model checker is used to display the
attack vector that can cause the vulnerabilities identified by the
previous phases, thereby alleviating the programmer’s work.
The main advantage of this technique over other systems is
the effective pruning of false positives, and providing concrete
examples of attack vectors that can cause the particular infor-
mation leak.

Just et al [22] proposed a hybrid analysis to track infor-
mation flow in Javascript, and this is different from other
solutions, since it deals with various object oriented concepts
like dynamic dispatch, the Javascript eval function, exceptions
etc. They also handle unstructured control flow along with
explicit flows, and inter- and intra-procedural dynamic slicing.
The static analysis finds the immediate postdominators to
take care of blocks with more than one successor, and the
runtime analysis involves placing the postdominators and the
associated statements in a runtime stack, every time any
function or control statement is executed.

An immediate postdominator is the statement to which
control will flow, no matter what path has been taken (for
example, the statement immediately after an if-else block). It
is obvious that runtime exceptions and interprocedural analysis
will not satisfy this rule. However, the workaround followed
by the authors is having an EXIT node to take care of such
runtime exceptions. The control flow of the program when it
encounters runtime exception, goes to the EXIT node.

While the analysis is sound, the solution for exception
handling has not been implemented, and hence the precision
of the technique with respect to false negatives cannot be
evaluated.

Moreover, it is obvious that the technique will not work

Metrics

Technique Precision Scalability Practicability
(FN: False
Negatives,
FP: False
Positives)
Static No FN, high | Low requires
FP scalability good
knowledge
of some
specification
language
Dynamic FN in strict | runtime very less an-
control instru- notation re-
depen- mentation quired
dency [11] overhead
Program Slicing | Program scalable low since
semantics specific to | it requires
may Java [16], | code under-
change [16], | low standing and
or technique | scalability more anno-
can due to | tations [15]
introduce manual
FN due to | effort
incorrect involved [15]
declassifica-
tion [15]
Tainting and | Possible FN | highly moderate
Static — it does | scalable to | — security
not consider | production policies
implicit code [19] specified
flows [19], using
or it s annotation
bound to the lan-
predefined guage [20]
security
policy speci-
fied [20]
Static and Dy- | Low FP but | scalability requires
namic FN possible | issues annotation in
due to miss- | for large | PQL [21]
ing security | Javascript
policy [21], code [22]

TABLE I: Summary of various techniques with respect to the metrics
considered. Precision considers only confidentiality, i.e., it is defined
with respect to the first adversary model

for large Javascript programs, for example Javascript code in
GMail which uses various other libraries.

There would be runtime overhead, in the form of pushing
and popping from the stack. Moreover, their labeling technique
for static analysis involves initially assigning a security label
for each statement in the form of long integers represented
using bit vectors, and then tracking information flow using a
bitwise OR operation. It is not very clear if the authors are
restricting to the two standard levels of security, namely low
and high.

With respect to the adversary models, this system handles
implicit flows and works for the limited adversary model, but
does not consider integrity. Moreover, there is no protection
offered against covert channel attacks.

XI. DISCUSSION AND FUTURE WORK

There are many interesting observations that we can infer
from the research work done in secure information flow
using compiler based techniques. Research in this field has

11

spanned various domains — either by using the technique on
its own, or by some combinations of techniques to enhance
the metrics considered. Information flow characterization has
many applications in building secure systems. However, its
actual applicability in such systems has been hindered by its
performance with respect to some particular metric — precision,
scalability, or practicability. The results inferred from the sur-
vey are summarized in table I. Another interesting observation
is the research effort spent on characterizing information flow
specifically for Java programs [19] [25] [16]. We think that this
might be because Java is being used in large scale industry
projects, while C and C++ are used for low level system
coding. However, it is important to characterize secure IFC
in C and C++, or confirm the compatibility of the techniques
above with these languages, since they are inherently unsafe
due to pointers.

It is obvious that applications have different metrics that
they are most concerned about. Pragmatically speaking, it
is nearly impossible, to handle all the metrics that we have
considered with equal importance, and to come up with a
flexible solution. For example, for intrusion detection systems,
precision in terms of reducing false alarms is very important.
Hence, all research in this area have focused on achieving
integrity and improving precision, by using combinations of
static analysis, dynamic tainting etc.

Also, these techniques which we have considered tend to
fall into well defined categories, when dealing with the two
aspects of IFC — confidentiality and integrity. Static analysis
inherently tries to solve the problem of confidentiality, while
dynamic analysis handles integrity. While some solutions
claim to support both confidentiality and integrity aspects of
IFC [9] [19], they do not perform well with respect to some
metric like precision or scalability.

Program Slicing as a technique for handling information
flow had some interesting research work where smaller sub-
problems within information flow were tackled. The tech-
niques for secure information flow using program slicing and
static analysis, does not seem practicable, since it requires
a solid understanding of some concepts of characterizing
information flow, for example when to declassify information.
However, there are other techniques which used program
slicing as one stage in the entire analysis framework. This lead
to an improvement in precision, while not having significant
impact on scalability.

Moreover, there are many solutions proposed [21] [20] [17],
that have good precision, but depend on the programmer to
specify the invalid information flow or patterns in some custom
specification language. Apart from the pragmatic concerns in
terms of programmer understanding and annotations required,
the weakest link in this technique is the human involved in the
security framework, and efforts should be made to automate
this process.

Dynamic information flow analysis does not seem to hold
much promise when it comes to information flow control. This
is because apart from scalability issues, there has not been a
breakthrough in applying this analysis to confidentiality. When

solving the problem of integrity, we need a stronger adversary
model, and the techniques surveyed in this paper with respect
to dynamic analysis, cannot handle that model yet. We believe
it can be better applied to the field of input fuzzing, testing
and identifying critical variables in a program.

Nowadays, energy being a big concern in computing, we
believe there is a lot of potential in research in applications
that can tolerate some information leakage, as long as it does
not lead to catastrophic consequences. Let us call this class
of applications — leakage tolerant applications. We think that
it might be interesting to explore the trade off space between
precision and energy. This is because they usually tend to
have an inverse relation with each other. The work on strict
control dependence in dynamic information flow tracking, is
one step in analyzing flows in such applications. The research
question is Can we dynamically configure the solution for
leakage tolerant applications, such that they consume lesser
energy in performing the analysis, at the cost of leaking some
amount of secret data?

The work involved in this would be to identify dynamically
configurable parameters in the fundamental analysis that is
done. This would mean developing some heuristics that can
prune the analysis, depending on the energy metric. Moreover,
fundamental static analysis like pointer analysis, and other
expensive analysis would also need to be finetuned, by first
deciding if there are avenues for approximation in these
analyses, that can help in significant energy savings.

Another possible future work is in the area of static analysis.
There seems to be a lot of research potential with respect
to static solutions for information flow as it is still in its
nascent stages. The inherent issue with static analysis is that
it tends to be overly conservative, thereby limiting precision,
but is more scalable than dynamic techniques, since there is no
runtime overhead involved. The research question we should
address is Can we reduce the false positives incurred in static
analysis using some well defined heuristics? Current research
work combines static analysis with dynamic information flow
tracking to improve the precision, but this is at the cost
of added runtime overhead. The key point here is that we
are aiming for a reduction in false positives, not complete
elimination. Hence, this is useful in applications that can
tolerate some degree of false positives, but requires scalability
and speed.

As a first step, it would be interesting to quantify the results
of static analysis, and use heuristics to prune away information
flows that do not fall within a specified threshold. The work
done in handling information leaks in mobile OS [8] [10]
seems very promising with respect to using static analysis in
an industrial setting. There might be other avenues where static
analysis would prove to be a very viable solution for secure
information flow.

XII. CONCLUSION

We have surveyed and critically evaluated current research
work done in the field of information flow security, using
principles in compilers like program analysis — static and

12

dynamic, program slicing, and tainting. Usually work related
to information flow presents solutions to handle some specific
cases, but they do not explicitly mention their adversary model.
Most of the research work, generally tends to focus more
on providing elegant solutions that works well with respect
to some metric, i.e., scalability, precision or practicability.
The techniques surveyed in this paper have been critically
evaluated against three specific adversary models, where the
adversary has varying levels of capabilities.

Moreover, these solutions were constantly reviewed to ver-
ify that it satisfies the ten principles of computer security. We
found that some work does not keep the design simple — by
having a larger trusted computing base, and some others have
questionable assumptions about their threat model, especially
solutions targeting intrusion detection systems. We have found
that while most of the research has focused on protecting
confidentiality of applications, research for protecting integrity
by characterizing information flow as invalid, is relatively at
its nascent stage. There has been decades of research on for-
mally verifying information flow in systems using type based
systems and programming constructs. While these solutions
offer soundness, they are even more conservative than static
analysis, and also require annotations from the programmer or
security expert. We believe there is a lot of research potential
and growing industry relevance in using compiler techniques
like program analysis and tainting for secure information flow.

REFERENCES

[1] W. Masri and A. Podgurski, “Using dynamic information flow analysis to
detect attacks against applications,” SIGSOFT Softw. Eng. Notes, vol. 30,
pp. 1-7, May 2005.

D. E. Denning, “A lattice model of secure information flow,” Commun.
ACM, vol. 19, pp. 236-243, May 1976.

A. Sabelfeld and D. Sands, “Dimensions and principles of declassifica-
tion,” in Proceedings of the 18th IEEE workshop on Computer Security
Foundations. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 255-269.

G. Smith, “Principles of secure information flow analysis,” in Malware
Detection, ser. Advances in Information Security, M. Christodorescu,
S. Jha, D. Maughan, D. Song, and C. Wang, Eds. Springer US, 2007,
vol. 27, pp. 291-307.

E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted
to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask),” in Proceedings of the 2010 IEEE
Symposium on Security and Privacy, ser. SP *10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 317-331.

M. Pistoia and U. Erlingsson, “Programming languages and program
analysis for security: a three-year retrospective,” SIGPLAN Not., vol. 43,
pp. 32-39, February 2009.

C. Hammer, “Information flow control for java based on path conditions
in dependence graphs,” in In IEEE International Symposium on Secure
Software Engineering, 2006.

M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: Detecting privacy
leaks in ios applications.” in NDSS. The Internet Society, 2011.
[Online]. Available: http://dblp.uni-trier.de/db/conf/ndss/ndss2011.html#
EgeleKKV11

Y. Liu and A. Milanova, “Static analysis for inference of explicit
information flow,” in Proceedings of the 8th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering, ser.
PASTE ’08. New York, NY, USA: ACM, 2008, pp. 50-56.

X. Xiao, N. Tillmann, M. Fahndrich, J. de Halleux, and M. Moskal,
“Transparent Privacy Control via Static Information Flow Analysis,”
Microsoft Research, Tech. Rep., 08 2011.

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

T. Bao, Y. Zheng, Z. Lin, X. Zhang, and D. Xu, “Strict control
dependence and its effect on dynamic information flow analyses,” in
Proceedings of the 19th international symposium on Software testing
and analysis, ser. ISSTA "10. New York, NY, USA: ACM, 2010, pp.
13-24.

S. McCamant and M. D. Ernst, “Quantitative information flow as
network flow capacity,” in Proceedings of the 2008 ACM SIGPLAN
conference on Programming language design and implementation, ser.
PLDI "08. New York, NY, USA: ACM, 2008, pp. 193-205.

W. Masri, A. Podgurski, and D. Leon, “Detecting and debugging
insecure information flows,” in In ISSREO04: the 15th International
Symposium on Software Reliability Engineering, 2004, pp. 198-209.
M. 1. Al-Saleh and J. R. Crandall, “On information flow for intrusion de-
tection: what if accurate full-system dynamic information flow tracking
was possible?” in Proceedings of the 2010 workshop on New security
paradigms, ser. NSPW ’10. New York, NY, USA: ACM, 2010, pp.
17-32.

S. F. Smith and M. Thober, “Refactoring programs to secure information
flows,” in Proceedings of the 2006 workshop on Programming languages
and analysis for security, ser. PLAS "06. New York, NY, USA: ACM,
2006, pp. 75-84.

S. Cavadini, “Secure slices of insecure programs,” in Proceedings of the
2008 ACM symposium on Information, computer and communications
security, ser. ASIACCS "08. New York, NY, USA: ACM, 2008, pp.
112-122.

A. B. Shaffer, M. Auguston, C. E. Irvine, and T. E. Levin, “A security
domain model to assess software for exploitable covert channels,” in
Proceedings of the third ACM SIGPLAN workshop on Programming
languages and analysis for security, ser. PLAS "08. New York, NY,
USA: ACM, 2008, pp. 45-56.

C. Hammer, R. Schaade, and G. Snelting, “Static path conditions
for java,” in Proceedings of the third ACM SIGPLAN workshop on
Programming languages and analysis for security, ser. PLAS "08. New
York, NY, USA: ACM, 2008, pp. 57-66.

O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman, “Taj:
effective taint analysis of web applications,” in Proceedings of the
2009 ACM SIGPLAN conference on Programming language design and
implementation, ser. PLDI *09. New York, NY, USA: ACM, 2009, pp.
87-97.

W. Chang, B. Streiff, and C. Lin, “Efficient and extensible security
enforcement using dynamic data flow analysis,” in Proceedings of the
15th ACM conference on Computer and communications security, Ser.
CCS ’08. New York, NY, USA: ACM, 2008, pp. 39-50.

M. S. Lam, M. Martin, B. Livshits, and J. Whaley, “Securing web
applications with static and dynamic information flow tracking,” in Pro-
ceedings of the 2008 ACM SIGPLAN symposium on Partial evaluation
and semantics-based program manipulation, ser. PEPM °08. New York,
NY, USA: ACM, 2008, pp. 3-12.

S. Just, A. Cleary, B. Shirley, and C. Hammer, “Information flow analysis
for javascript,” in Proceedings of the 1st ACM SIGPLAN international
workshop on Programming language and systems technologies for
internet clients, ser. PLASTIC *11. New York, NY, USA: ACM, 2011,
pp. 9-18.

J. Heusser and P. Malacaria, “Quantifying information leaks in software,”
in Proceedings of the 26th Annual Computer Security Applications
Conference, ser. ACSAC "10. New York, NY, USA: ACM, 2010, pp.
261-2609.

C. Hammer and G. Snelting, “Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program dependence
graphs,” International Journal of Information Security, vol. 8, pp. 399—
422, 2009.

B. Li, “A technique to analyze information-flow in object-oriented
programs,” Information & Software Technology, vol. 45, no. 6, pp. 305—
314, 2003.

A. Rountev, B. G. Ryder, and W. Landi, “Data-flow analysis of program
fragments,” in Proceedings of the 7th European software engineering
conference held jointly with the 7th ACM SIGSOFT international
symposium on Foundations of software engineering, ser. ESEC/FSE-7.
London, UK, UK: Springer-Verlag, 1999, pp. 235-252.

W. Masri and A. Podgurski, “Using dynamic information flow analysis
to detect attacks against applications,” in Proceedings of the 2005 work-
shop on Software engineering for secure systems building trustworthy
applications, ser. SESS ’05. New York, NY, USA: ACM, 2005, pp.
1-7.

13

