
Evaluation of Automated Securing Web
Applications: A Survey

Rajeeb Saha
Master of Software Systems
University of British Columbia

rajeeb05@mss.icics.ubc.ca

ABSTRACT
With enormous increasing of e-business another
thing is dramatically increasing, that is web
application scamming. Therefore, it became a
significant challenge for web application developer
maintaining the confidentiality and integrity of the
data they manipulate. Several research groups are
working to secure web application end-to-end
through partitioning application code (Swift, Links,
Hop, UML-based Hilda), taking template-based
approach (FlyingTemplate), abstracting security-
critical code, building automated object oriented
programing language (BAL) or specifying
application-level data flow assertions (RESIN).
This paper discusses construction, achievements,
performance, limitations of these diverse
procedures as well as different types of common
web application-level attacks and vulnerabilities.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]:
Local and Wide-Area Networks – Internet, D.1.m
[Programming Techniques]: Miscellaneous,
D.2.3[Software Engineering]: Coding Tools and
Techniques – Object-oriented programming,
D.2.11 [Software Engineering]: Software
Architectures – Data abstraction, D.3.2
[Programming Languages]: Language
Classifications – Specialized Application
Languages , D.4.6 [Operating Systems]: Security
and Protection – Information flow controls, D.3.3
[Programming Languages]: Language Constructs
and Features – Frameworks, H.3.4 [Information
Storage And Retrieval]: Systems and Software –
Distributed systems, H.4.m [Information Systems
Applications]: Information Systems –
Miscellaneous, I.2.2 [Artificial Intelligence]:
Automatic Programming – Program
transformation

General Terms
Security, Languages, Design

Keywords
Information flow, security policies, Client-Server
Partitioning, compilers, Swift, Links, Hilda, Hop,
BAL, RESIN, Declarative Language, Security
Policy Description Language, Application-Level
Web Security, Data Driven Application, Template
engines, Web applications, Web 2.0, JavaScript

1. INTRODUCTION
Now-a-days, an open question is how developers
should construct web applications that accurately
enforce robust security policies for data
confidentiality and integrity. Information flow
policies are an end-to-end requirement of web
application security, unlike (discretionary) access
control, which does not track information
propagation. [16] Web site programmers often
have strategy for precise data flow within their web
application to escape SQL injection or cross-site
scripting susceptibilities. Now-a-days, unluckily,
these strategies are fulfilled indirectly where they
try to introduce code in all the applicable places to
ensure accurate flow, but it is possible and often
miss some those can lead to web application
exploits. For example, one well known web
application, phpMyAdmin [19], involves sanitizing
user input in 1,409 places. Not unexpectedly,
developers forgot some of these calls and
phpMyAdmin has suffered 60 vulnerabilities.[3]

Recently, different research groups proposed
different automatic solutions to solve this and other
types of web application’s vulnerabilities.
Automatic secure program partitioning [[14], [21]]
has been recommended as a way to solve web
vulnerabilities. Swift uses the Jif/split compiler for
automatically partitions high-level, non-distributed

mailto:rajeeb05@mss.icics.ubc.ca

code into server-client subprograms that execute
securely on a group of host machines that are
trusted to varying degrees by the contributing
principals. A partitioning treats as secure if the
security of a principal can be affected only by the
trusted hosts. As a result, the partitioning of the
source code is driven by high-level trusted security
policy specifications.

With the aims of implementation transparency,
proficiency, security, and standards agreement in
mind, Tastsubori and Suzumura developed
FlyingTemplate [18]. Main two design principles
behind FlyingTemplate are effective browser cache
usage, and sensible negotiations which confine the
template usage patterns and relax the security
policies marginally but in a controllable way. This
method permits typical template-based Web
applications to run effectively with
FlyingTemplate. As an experiment, they tested the
SPECweb2005 banking application using Flying-
Template without any other alterations and saw
throughput enhancements from 1.6x to 2.0x in its
best mode. Moreover, FlyingTemplate can
implement compliance with a modest security
policy, thus addressing the security glitches of
client-server partitioning in the Web application
environment.

Alexander, Xi, Nickolai and M. Frans [3] took data
flow assertion approach to make web application
more secure. Their approach knows as RESIN. In
this methodology they made a system which
allowed developers to create their design for
precise data flow explicit using data flow
assertions. Developers could write a data flow
assertion in a place to capture the application’s
high-level data flow invariant, and RESIN checked
the assertion in all relevant places, even places
where the developers might have elapsed to check.
And this way RESIN makes web applications more
secure than conventional web applications. Main
design goal of RESIN is provide developers to gain
assurance in the accuracy of their application not to
grip malicious code. RESIN faces some challenges
to verify a data assertion, which are describes in
details in section 3 of this paper.

In this paper I discuss about these different
approaches in details. In section 2, I provide an
overview about web vulnerabilities, why we need
to secure web application, examples of web
application attack. In section 3, I describe about

evaluation of diverse research works to secure the
web applications. In first part of the section 3, I
provide details about secure web application code
partitioning by java security annotations (Jif &
SWIFT). In next part of the section 3, I discuss
about automatic web application partitioning by
UML and relational data model (Hilda). In
subsequent part of same section, I go through about
template engine approach (FlyingTemplate) to
automated offloading from server to client. In
flowing part of that section, I talk more details
about RESIN which improves application security
with data flow assertions. In last part of the section,
I describe component based object oriented
programing language (BAL), others similar
approaches in brief and provide a comparison of
these approaches. I discuss about conclusion and
future works in section 4.

2. WEB VULNERABILITIES:
There are several web application vulnerabilities.
SQL injection, Cross-site scripting, Denial of
service, Buffer overflow, Directory traversal,
Server-side script injection are major
vulnerabilities. In this section, I describe these
vulnerabilities briefly.

Table 1: Top CVE security vulnerabilities of
2008[4]

Vulnerability Count Percentage

SQL injection 1176 20.4%
Cross-site scripting 805 14.0%

Denial of service 661 11.5%

Buffer overflow 550 9.5%

Directory traversal 379 6.6%
Server-side script

injection 287 5.0%

Missing access checks 263 4.6%
Other vulnerabilities 1647 28.6%

Total 5768 100%

2.1.SQL Injection and Cross-Site
Scripting

In the last few of years, attacks against the Web
application layer have required increased attention
from security professionals. This is because no

matter how strong firewall rule sets are or how
diligent patching mechanism may be, if Web
application programmers have not kept an eye on
secure coding practices, attackers will walk right
into one’s systems through port 80. The two main
attack methods which have been used extensively
are SQL Injection and Cross Site Scripting attacks
[14]. From Table 1 it is noticeable that according to
CVE [28] in 2008 top two web security
vulnerabilities were these two techniques. Together
these two techniques created ¼ of web application
vulnerabilities. SQL Injection (SQLI) and cross
site scripting (XSS) attacks are widespread
methods of outbreak where the web attacker trades
the input to the application to access or transform
user data and perform malicious code. In the best
severe attacks (known as second-order, or
persistent, XSS), an attacker can corrupt a database
which cause subsequent users to perform malicious
code.

SQL Injection denotes to the method of injecting
SQL meta-characters and instructions into Web-
based input fields in order to manipulate the
execution of the back-end SQL queries. According
to Web Application Security Consortium Glossary,
the definition of SQL Injection is

“An attack technique used to exploit web sites by
altering backend SQL statements through
manipulating application input.”[26]

SQL Injection happens when a web application
accepts user input that is straight placed into a SQL
Statement and does not appropriately filter out
unsafe characters. This can permit an attacker to
not only snip data from the affected database, but
also modify or delete data from database. Certain
SQL Servers such as Microsoft SQL Server
contain Stored and Extended Procedures (database
server functions). It may be possible to
compromise the entire system if an attacker can
acquire access to these Procedures. [27] These are
attacks focused largely against another
organization's Web server.

According to Web Application Security
Consortium Glossary, the definition of Cross Site
Scripting attack is

“(Acronym – XSS) An attack technique that forces
a web site to echo client-supplied data, which
execute in a user’s web browser. When a user is
Cross-Site Scripted, the attacker will have access

to all web browser content (cookies, history,
application version, etc)” [26]

Cross Site Scripting attacks take place by
embedding script tags in URLs and tempting
unsuspicious users to click on them, ensuring that
the malicious JavaScript gets performed on the
victim's system. These attacks influence the
confidence between the user and the server and
become successful because server has no
input/output validation to reject JavaScript
characters.

2.2.Denial of Service
Denial of service is another common vulnerability
that accounts for 11.5% of the vulnerabilities in
Table 1. It is well known as DoS attack. According
to Web Application Security Consortium Glossary
Directory traversal is

“An attack technique that consumes all of a web
site’s available resources with the intent of
rendering legitimate use impossible. Resources
include CPU time, memory utilization, bandwidth,
disk space, etc. When any of these resources reach
full capacity, the system will normally be
inaccessible to normal user activity.”[26]

Let’s give an example. What would happen if one
person and some of his friends and relatives called
the same pizza shop again and again and ordered
pizza, but they did not really want? They would
create obstruction the phone lines and devastate the
kitchen same time. Therefore, the pizza shop could
not proceed to any more new orders.

That is what takes place to Web servers while web
attackers knock them with denial-of-service
attacks. Web servers were cracked offline by too
many unwanted requests from computers
controlled by the attackers.

2.3.Buffer Overflow
Next top web vulnerability that according to CVE
[28] in 2008 was buffer overflow which accounts
for almost 1/10 of web application vulnerability.
According to Web Application Security
Consortium Glossary buffer overflow is

“An exploitation technique that alters the flow of
an application by overwriting parts of memory.
Buffer Overflows are a common cause of
malfunctioning software. If the data written into a
buffer exceeds its size, adjacent memory space will

be corrupted and normally produce a fault. An
attacker may be able to utilize a buffer overflow
situation to alter an application's process flow.
Overfilling the buffer and rewriting memory-stack
pointers could be used to execute arbitrary
operating-system commands.”[26]

Though it may happen unintentionally through
programming errors, buffer overflow is a gradually
well-known type of security attack on data
integrity. In these types of attacks, the extra data
may enclose codes intended to trigger specific
actions. That could be happen by sending new
instructions to the attacked computer. For example,
damage the user's files, change data, or disclose
confidential information can be outcome of buffer
overflow further attacks.

2.4.Directory Traversal
Directory traversal is well-known another web
application vulnerability. According to Web
Application Security Consortium Glossary, the
definition of Directory traversal is

“A technique used to exploit web sites by accessing
files and commands beyond the document root
directory. Most web sites restrict user access to a
specific portion of the file-system, typically called
the document root directory or CGI root directory.
These directories contain the files and executables
intended for public use. In most cases, a user
should not be able to access any files beyond this
point.”[26]

From Table 1, it is noticeable that according to
CVE [28] in 2008, Directory traversal is another
well-known weakness that accounts for 6.6% of the
web application vulnerabilities. To exploit this
weakness, an attacker usually inserts the “..” string
as part of the file name that permits the attacker to
gain illegal access to read, or write files in the
victim’s file system. These abuses can be observed
as faulty data flows. The file’s data is incorrectly
flowing to the attacker if he reads a file without the
proper authorization. If the attacker writes to a file
without the appropriate authorization, the attacker
can cause an unacceptable flow into the file.[4]

2.5.Server-Side Script Injection
Server-side script injection is responsible for 5% of
the exposures reported by CVE in Table 1. It is
also known a Server-side information injection or

SSI Injection. According to Web Application
Security Consortium Glossary SSI Injection is

“A server-side exploit technique that allows an
attacker to send code into a web application, which
will be executed by the web server.”[26]

Many applications allow uploading images or
attachments. An attacker can abuse this by
uploading a file with the desired code onto the
server and then providing the name of that file as
the theme to load.[4]

From previous discussion we know about different
types of web application vulnerabilities. There can
more types of vulnerabilities which are related to
web application’s confidentiality and client-server
data integrity. Stephen Chong et. al. [21] gave a
nice example - “suppose we want to implement a
simple web application in which the user has three
chances to guess a number between one and ten,
and wins if a guess is correct. Even this simple
application has subtleties. There is a confidentiality
requirement: the user should not learn the true
number until after the guesses are complete. There
are integrity requirements, too: the match between
the guess and the true number should be computed
in a trustworthy way, and the guesses taken must
also be counted correctly.

The guessing application could be implemented
almost entirely as client-side JavaScript code,
which would make the user interface very
responsive and would offload the most work from
the server. But it would be insecure: a client with a
modified browser could peek at the true number,
take extra guesses, or simply lie about whether a
guess was correct. On the other hand, suppose
guesses that are not valid numbers between one
and ten do not count against the user. Then it is
secure and indeed preferable to perform the bounds
check on the client side. Currently, web application
developers lack principled ways to make decisions
about where code and data can be securely placed.”

Therefore, to rid of these vulnerabilities web
application developers need some automated tools
which can figure out that web application have any
exposure or not. Following section discuss about
some of these tools and procedures.

3. EVALUATION OF
AUTOMATED SECURING
WEB APPLICATIONS:

For simplicity, I divided this section discussion
into five major sub-sections. Frist two sub-sections
I discuss about securing web application by
portioning source code. Next section focuses on
template base approach. Forth section is related to
data flow assertions and in last section I discuss
about other similar approaches.

3.1.Code Partitioning by Java
Security Annotations:

Cornell University developed the Jif [14]
programming language targeting to use replication
and partitioning to develop secure distributed
systems. They notice that the Java language has
enhanced annotations in order to define access
rights on each variable declaration. They used this
into the Jif compiler to enforce the declared access
rights for all usages of the annotated variables and
splitter partitions the code in two parts to maintain
consistency by automatically introducing state
synchronize messages while also imposing the
rights between the tiers. Their technique is well
known as Jif/split system.

Later they introduced the Swift [21]. In Swift a
web server is server side tier and client side tier is
implemented though a web browser. Swift is a new
principled methodology to developing web
applications which are secure by construction. The
system presents an intermediate language which
known as WebIL. It allows the partitioning of the
web application into client and server while
considering data placement restrictions. A servlet
implementation provided for the server
communications while the Google Web Toolkit
(GWT) [25] was used for the client.

A significant aspect of Swift is that it provides
security by construction: the developers states
security specifications, and the system converts the
application to guarantee that these specifications
are met.

The Jif/split system as well takes Jif as a source
language and alters applications by placing code
and data onto sets of hosts in agreement with the
labels in the source code. Jif/split finds the general
problem of distributed computation in a system

integrating mutual distrust and random host
dependence relationships.

Swift varies in discovering the challenges and
prospects of web applications. Web applications
have a specified trust model. Therefore specified
construction methods are used to exploit this
dependence relationship. In particular, replication
is used by Jif/split to increase integrity, whereas
Swift uses replication to increase performance and
responsiveness. In addition, Swift uses a more
sophisticated algorithm to control the placement
and replication of code and data to the existing
hosts. Swift applications support dynamic user
interfaces and control the information flows. No
Jif/split applications contain data structures or
control flow of comparable complexity. Jif’s label
parameterization is needed to reason about
information flow in complex data structures, but
Jif/split lacks the necessary support for label
parameters.[22]

Swift is an acronym of “Splitting Webapps via
Information Flow Types”. In this system web
applications are written in high-level programming
language – Java and information security
specifications are unambiguously visible as
declarative annotations. The Swift compiler selects
where code and data in the web application can be
placed securely by these security annotations. Code
and data are partitioned at fine granularity, at the
level of individual expressions and object fields.
Building web applications in this way guarantees
that the resultant distributed program protects the
integrity and confidentiality of information flow
between web server and client.

3.1.1. The Swift Architecture:
The system starts with annotated Java source code
at the top of the diagram. Proceeding from top to
bottom, a series of program alterations changes the
code into a partitioned form shown at the bottom
(Figure 1), with Java code running on the web
server and JavaScript code running on the client
web browser. Roughly the Swift architecture is as
follows:

3.1.1.1. Jif source code:
Through the use of Jif – a programing language for
information flow control and access control, Swift
enforces security by construction. Jif extends Java
programing language. For Swift, Stephen et al. [22]
assume that the web server can be trusted, but the

client machine and browser may be buggy or
malicious. Consequently, Swift must convert
program code so that the application runs securely,
even though it runs partly on the untrusted client.

3.1.1.2. WebIL intermediate code:
In this part Jif language program transforms into an
intermediate language called WebIL. This
language used to determine which part of the code
should be placed on the server and which part of
the code placed on the client.

Figure 1: The Swift Architecture [21]

3.1.1.3. WebIL optimization:
In this phase initial WebIL code in optimize by
compiling into a form such that it minimizes
partition cost of the placement, in particular by
avoiding unnecessary network messages between
the client and server based on the specifications
made earlier. The minimization of the partitioning
cost is expressed as an integer programming (IP)
problem, and maximum flow methods are then
used to find a good partitioning.

3.1.1.4. Splitting code:
Then, optimized WebIL code is converted into
actual Java programs with two parts - one for the
server-side computation and the other for the
client-side computation. This is a fine-grained
transformation.

3.1.1.5. JavaScript output:
Since as a client I do not want to execute the client-
side Java code on my web browser. Therefore, in

this phase Swift translate the client side Java
program into JavaScript code. On the client, this
code then uses the Google Web Toolkit (GWT)
run-time library and Swift’s own run-time support.
On the server, the Java application code links
against Swift’s server-side run-time library, which
in turn sits on top of the standard Java servlet
framework.[21]

From the browser’s perspective, the application
runs as a single web page, with most user actions
(e.g., clicking on buttons) handled by JavaScript
code. This approach seems to be the current trend
in web application design, replacing the older
model in which a web application is associated
with many different URLs. One result of the
change is that the browser “back” and “forward”
buttons no longer have the originally intended
effect on the web application, though this can be
largely hidden, as is done in the GWT. [22]

3.1.1.6. Partitioning and replication:
Compiling a Swift application places some code
and data onto the client. Code and data that
implement the user interface clearly must be
located on the client. Other code and data are
placed on the client to avoid the latency of
communicating with the server. With this tactic,
the web application can have a rich, highly
responsive user interface that waits for server
replies only when security demands then the server
involved. The Swift runtime support is responsible
for handling synchronization and communication
among the different segments used to perform the
system.

3.1.2. Advantage of Swift:
1. Web developers get a tool which ensures

that the resulting distributed application
protects the confidentiality and integrity
of the information based on given
security annotations.

2. By the general enforcement of
information integrity, Swift also guards
against common top two web application
vulnerabilities – SQL injection and
cross-site scripting.

3. Swift applications are also easier to write
because control and data do not need to
be explicitly transferred between client
and server through the awkward extra-
linguistic mechanism of HTTP request.

4. In current practice, the developer has no
help planning the protocol or interfaces
by which client and server code
communicate. With Swift, the compiler
automatically produces secure, effective
interfaces for communication.

5. Swift also optimizes the server – client
communication which saves bandwidth.

6. Moreover, Swift replicates some codes to
client side which makes the web
application more responsive.

7. Swift does not introduce new
programming language or platform to
secure the web application. It uses well
known Java language with security
annotations.

3.1.3. Weakness of Swift:
1. Main problem of Swift is bandwidth due

to it puts some extra code in client side to
make web application more responsive.

2. Next weakness of Swift introduces when
developers try to trace bug in the system,
because Swift consist of too many
modules – initial code needs to be
compiled, transformed and optimized at
least three times to get actual application
code.

3. When Google Web Toolkit translates
client side codes to JavaScript, it creates
extra code which is bandwidth
inefficient.

4. It only supports Java programming
language. Therefore, widely used web
language (php, python) developers need
to learn Java. That means longer learning
curve.

Besides these weaknesses, I personally think that
Swift would deliver a more secure system and it
will save both time and money for companies who
are looking to upgrade their current not so secure
web application.

3.2.Data Driven Web Application
Partitioning:

To secure web application, another effort was
made with the introduction of the programming
language Links [8] at the University of Edinburgh.
It follows the functional programming paradigm
and integrates an SQL based database. OCaml was
used to develop the compiler and the run time

environment consists of JavaScript code for the
browser and SQL commands at the server. The
state is maintained completely on the client.[20]

Recently, Hilda was introduced. In Hilda, as in
Links, the language delivers for data definition as
well. The language is declarative and the notion of
separating the user interface from the business
logic is introduced.[20]

 Data-driven web applications are usually
structured in three tiers with different programming
models at each tier.

1. Lowest Tier: A database system which
supplies persistent data

2. Middle Tier: An application server which
holds most of the application logic

3. Top Tier: The client web browser that
encloses some client-specific program
logic and presentation

Figure 2: Tiers in a Data-Driven Web

Application [29]
This division forces Programmers to manually
partition program functionality across the different
tiers which results complex logic, suboptimal
partitioning, and expensive repartitioning of
applications.

Fan Yang et al. [9] introduce a unified platform for
automatic partitioning of data-driven web
applications. Their approach is based on Hilda, a
high-level declarative programming language with
a unified data and programming model for all the
layers of the application. Based on run-time
properties of the application, Hilda’s run time
system automatically partitions the application
between the tiers to improve response time while
adhering to memory and/or processing constraints
at the clients.

3.2.1. The Hilda Architecture:
First, Hilda is based on UML, a well-accepted
modeling framework. Hilda delivers an application
building block called an AUnit (for Application
Unit), analogous to a UML class. AUnits support
encapsulation like a regular UML class, but the
formation and manipulation of AUnits is stated
declaratively and delivers natural support for
conflict discovery in the face of concurrent
application updates. AUnits are single-entry and
single-exit, which enables structured programming.
The main dissimilarity from the traditional use of
UML is that the object formation and operations
are stated declaratively, which enables the Hilda
compiler to automatically execute various
optimizations without burdening the user with
performance issues.

Second, Hilda uses a single data model – the
relational model – to denote the state of all parts of
the application, as well as the database, application
logic and the client.

Third, Hilda logically splits server and client state
by separating persistent states and local states to
enable highly concurrent execution.

Fourth, Hilda models the application logic and
associated control flow as a hierarchy (Activation
Tree) which captures the application logic of the
system.

Finally, Hilda provides a HTML-based
presentation construct. It ensures a clear separation
of application logic from presentation. [29]

3.2.2. Advantage of Hilda
1. Hilda allows an exciting optimization

opportunity where client-server
partitioning can be done automatically
and correctly by a compiler instead of
having the developers write low-level
and error prone code for the same
purpose.

2. The developers only need to focus on
developing the core logic of the system,
and the Hilda compiler can automatically
compile it into code depending on the
abilities of the client and other influences
such as bandwidth limitations and
concurrent actions.

3.2.3. Drawback of Hilda:
1. Although Hilda logically separates server

and client state, but it has ignored the
security problems produced by porting
some parts of the server-side logic of a
web program to the untrusted clients.

Hilda, as same as Swift, also uses Java programing
language. In Hilda, the statement will either be
executed at the server or compiled into Java code
and executed at the client based on the client
capabilities. Therefore, if we can introduce Java
security annotation in Hilda as like Swift, then it
would be overcome the security drawbacks. Or, if
it is possible to encrypt the ported server-side
logic, then it can be overcome the security
drawbacks. It would be great future work and hope
more researchers come forward and take the
challenge to make Hilda as a secure platform for
web applications.

3.3.Template Engine Approach:
Template-based Web programming is widespread
mostly because it splits the page representation, the
“views”, from the business logic and data of an
application, the “controls and models”. Such
templates are presented as software libraries, as
programming or modeling language features or as
Web application frameworks. The benefits include
encapsulating the look and feel of a website,
clearly described views, a better division of labor
between graphics designers and coders, component
reuse for view designs, unified control over the
evolution of the appearance, better maintainability
of the runtime, interchangeable view artifacts for
different development projects, and security
compatible with end-user customizability.[18]

FlyingTemplate is a server-side template engine. It
looks much like a regular server-side engine that
does the template filling work on the server side,
but actually lets the clients do that work. Michiaki
and Toyotaro [18] used Smarty as a reference
template engine and PHP as the underlying
programming language, but the design of
FlyingTemplate itself should be applicable to other
template engines and programming languages.

The major design goals of FlyingTemplate are:

Efficiency – FlyingTemplate should perform better
than existing template engines, at least in typical
circumstances.

Standards compliance – The implementation
should conform to Web standards.

Implementation Transparency – Existing
applications should run correctly without
modifications.

Server Security – Introducing FlyingTemplate
should not create unexpected security
vulnerabilities.

FlyingTemplate is a server-side template engine
that automatically handovers more of the task of
generating HTML documents to the client
browsers. Instead of generating a fully-generated
HTML page, the proposed template engine creates
a skeletal script which contains only the dynamic
values of the template parameters and the bootstrap
code that executes on a Web browser at the client
side. Michiaki and Toyotaro designed the
architecture of the client-server partitioning for
effective browser cache use with the
implementation of a simple server security policy.
The efficiency of the partitioned system like Swift
depends on the complex analysis of the entire
program, which may not always be quite optimum.
The methodology of FlyingTemplate can be
considered as greatly easing this kind of security
annotation task and giving heuristics for efficient
partitioning according to the convention of the
template-based programming model. Therefore, if
we can combine Swift and FlyingTemplate
approach together, then it would form secure web
application which can be easily developed.

3.4.Data Flow Assertions:
RESIN [4] is a new language runtime that supports
avoiding security vulnerabilities, by allowing
programmers to specify application-level data flow
assertions. RESIN delivers policy objects, which
developers use to specify assertion code and
metadata; data tracking, which allows developers
to associate assertions with application data and to
keep track of assertions as the data flow through
the application; and filter objects, which
developers use to express data flow boundaries at
which assertions are tested.

Using RESIN, Web application developers can
avoid a range of glitches like SQL injection, cross-
site scripting, accidental password disclosure and
missing access control checks. Adding a RESIN
assertion to a program needs few modifications to

the existing program code, and an assertion can
reuse existing code and data structures. For
instance, 23 lines of code detect and prevent three
previously-unknown missing access control
vulnerabilities in phpBB, a popular Web forum
application. Other assertions comprising tens of
lines of code prevent a range of vulnerabilities in
Python and PHP applications. A prototype of
RESIN incurs a 33% CPU overhead running the
HotCRP conference management application. [4]

3.4.1. Benefits of RESIN:
For implementing data flow assertions, RESIN
provides three mechanisms:

1. Data tracking as data flows through an
application,

2. Policy objects associated with data,
3. Filter objects that define data flow

boundaries and control data movement.

Alexander et al. [4] evaluated RESIN by adding
data flow assertions to prevent security
vulnerabilities in existing PHP and Python
applications. Their results show that data flow
assertions are effective at preventing a wide range
of vulnerabilities like SQL Injection, Cross-Site
Scripting, directory traversal, server-side script
injection, access control, password disclosure, etc.
These assertions are short and easy to write.
Moreover, In RESIN, assertions can be added
incrementally without having to restructure
existing applications.

3.4.2. Limitation of RESIN:
RESIN currently has a number of limitations:

First, Alexander et al. [4] would like to provide
better support for data integrity invariants. Instead
of requiring programmers to specify what writes
are allowed using filter objects, they predict using
transactions to buffer database or file system
changes, and checking a programmer-specified
assertion before committing them.

Second, for example, an assertion could avoid
clear-text passwords from flowing out of the
software module that handles passwords. Attaching
filter objects to function calls helps with these
boundaries, but languages like PHP and Python
allow code to read and write data in another
module’s scope as if they were global variables.
An internal data flow boundary would need to
address these data flow paths.

Table 2: Compare Swift, FlyingTemplate and RESIN

 Swift Hilda FlyingTemplate RESIN
Technique Partitioning by Java

security annotation
Data driven
partitioning

Template base Data flow assertion

Language Java Java , UML PHP PHP, Python
Complexity Complex Complex Simple Simple

SQL Injection Prevent No Unknown Prevent
Cross-Site Scripting Prevent No Unknown Prevent

Bandwidth Efficiency No Yes Yes Yes
Support Dynamic Web

Application
Yes Yes Yes Yes

Finally, dynamic data tracking adds runtime
overheads and presents challenges to tracking data
through control flow paths. Developer would like
to investigate whether static analysis or
programmer annotations can help check RESIN-
style data flow assertions at compile time.

3.5.Other Automated Approaches:
Alefragis and Chondros defined a new object
oriented programming language called BAL [20]
(Business Applications Language) supporting the
usual constructs of class, property and method,
with automatic memory management via garbage
collection. It is enriched with domain specific
commands in order to aid in the implementation of
the partitioning logic by reducing the problem from
its general form.

A different approach comes from INRIA where a
new programming language called Hop [17] was
introduced aiming to provide for interactive web
applications. The approach is not aimed for
database oriented applications but mostly deals
with the user interface. Still, the target program is
developed monolithically and the compiler splits it
in a client and server part. The programming
language is modeled closely to the HTML
layout.[20]

4. CONCLUSIONS
Now-a-days, there are security concerns to address
privacy, data confidentiality and integrity. In static
partitioning like Swift, a module is permanent to
run either at the client or at the server. If a module
contains sensitive server-side data, the module
should run at the server. In dynamic partitioning,
web developers need to confirm that a module

which contains the sensitive data of the web
application does not run at client browser. This
obligation brings up challenging privacy-
preserving partitioning difficulties. There are
approaches like Swift [22] that rely on developers
annotations. One exciting research trend is to look
at more automated methods of privacy preserving
partitioning through static and dynamic application
investigation. I have confidence in that automated
dynamic partitioning of application code is a vital
part of future secure web application development.

From previous discussion, we notice that Swift
makes web application more secure. But in Swift,
applications should be written in Java that creates
language constrain. There are other well used web
languages like php, python remaining unsecure and
it is hard to convert these applications into java.
So, we need some solution which can convert these
unsecure web applications to secure web
applications. It can be possible by combining Swift
with FlyingTemplate or by overcome the limitation
of RESIN. These would be good future research
topic.

In this paper, I tried to give brief overview about
some automatic tools which were used to make
web applications more secure as well as reduced
time to develop them. I also tried to figure out their
benefits and limitation. Then I discussed some
solution to overcome these limitations.

5. REFERENCES
[1] Kiezun, A., Guo, P.J., Jayaraman, K., Ernst,

M.D. 2009, Automatic creation of SQL
Injection and cross-site scripting attacks. In
Proceedings of ICSE. 199-209.

[2] Myers, A.C. and Liskov, B. 2000. Protecting
privacy using the decentralized label
model. In Journal of ACM Transactions on
Software Engineering and Methodology
(TOSEM). 9, 4 (October 2000), 410-442.

[3] Yip, A. S. 2009. Improving web site security
with Data Flow Management. Doctoral
Thesis. Massachusetts Institute of
Technology. (September 2009).

[4] Yip, A., Wang, X., Zeldovich, N., and
Kaashoek, M.F. 2009, Improving application
security with data flow assertions. In
Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems
principles (SOSP '09). 291-304.

[5] Chun, Byung-Gon, & Maniatis, P.
2010. Dynamically Partitioning Applications
between Weak Devices and Clouds. In
Proceedings of the 1st ACM Workshop on
Mobile Cloud Computing & Services: Social
Networks and Beyond (MCS '10). Retrieved
February 01, 2012, from
http://dl.acm.org/citation.cfm?id=1810938.

[6] Scott, D. and Sharp, R. 2002. Abstracting
application-level web security. In Proceedings
of the 11th international conference on World
Wide Web (WWW '02). 396-407.

[7] Scott, D. and Sharp, R. 2002. Developing
Secure Web Applications. In Proceedings of
IEEE Internet Computing. 38-45.

[8] Cooper, E., Lindley, S., Wadler, P., and
Yallop, J. 2006. Links: Web Programming
Without Tiers. In Proceedings of FMCO.
266-296.

[9] Yang, F., Gupta, N., Gerner, N., Qi, X.,
Demers, A.J., Gehrke, J., and
Shanmugasundaram, J. 2007. A unified
platform for data driven web applications with
automatic client-server partitioning. In
Proceedings of the 16th international
conference on World Wide Web (WWW '07).
341-350.

[10] Trouessin, G., Fabre, Jean-Charles, and
Deswarte, Y. 1991. Improvement of data
processing security by means of fault
tolerance. In14th National Computer Security
Conference, pages 295-304, Washington,
USA.

[11] Bar-Gad, I., and Klein, A. 2002. Developing
Secure Web Applications. Sanctum Inc. (June
2002) Retrieved February 01, 2012, from
http://www.cgisecurity.com/lib/WhitePaper_
DevelopingSecureWebApps.pdf

[12] Fabre, Jean-Charles., Deswarte, Y., and
Randell, B. 1994. Designing secure and
reliable applications using fragmentation-
redundancy-scattering: an object-oriented
approach. In PDCS 2: Open Conference,
pages 343-362, Newcastle-upon-Tyne.
Department of Computing Science, University
of Newcastle, NE1 7RU, UK.

[13] Kuuskeri, J. and Mikkonen, T. 2009.
Partitioning web applications between the
server and the client. In Proceedings of the
2009 ACM symposium on Applied
Computing (SAC '09). 647-652. Retrieved
February 01, 2012, from
http://doi.acm.org/10.1145/1529282.1529416

[14] Mookhey, K. K., & Burghate, N. 2010.
Detection of SQL Injection and Cross-site
Scripting Attacks. (2010, November 02)
Retrieved from symantec:
http://www.symantec.com/connect/articles/det
ection-sql-injection-and-cross-site-scripting-
attacks

[15] Princehouse, L. and Birman, K. 2009. Code-
partitioning gossip. In Proceedings of
Operating Systems Review. 40-44.

[16] Zheng, L., Chong, S., Myers, A.C., and
Zdancewic, S. 2003. Using Replication and
Partitioning to Build Secure Distributed
Systems. In Proceedings of IEEE Symposium
on Security and Privacy. (May 2003) 236-
250.

[17] Serrano, M., Gallesio, E., and Loitsch, F.
2006. Hop: a language for programming the
web 2.0. In Proceedings of OOPSLA
Companion. 975-985.

[18] Tatsubori, M. and Suzumura, T. 2009. HTML
templates that fly: a template engine approach
to automated offloading from server to
client. In Proceedings of WWW. 951-960.

[19] phpMyAdmin. phpMyAdmin 3.5.0.
http://www.phpmyadmin.net/.

[20] Alefragis, P. and Chondros, N. 2009. BAL: A
Language for Component Based Distributed

http://www.sigmobile.org/mobisys/
http://dl.acm.org/citation.cfm?id=1810938
http://doi.acm.org/10.1145/1529282.1529416

Applications Development. In Proceedings of
EUROMICRO-SEAA. 486-489.

[21] Chong, S., Liu, J., Myers, A.C., Qi, X.,
Vikram, K., Zheng, L., and Zheng, X. 2007.
Secure web application via automatic
partitioning. In Proceedings of SOSP. 31-44.

[22] Chong, S., Liu, J., Myers, A.C., Qi, X.,
Vikram, K., Zheng, L., and Zheng, X. 2009.
Building secure web applications with
automatic partitioning. In Proceedings of
Communication. ACM. 79-87.

[23] Zdancewic, S., Zheng, L., Nystrom, N., and
Myers, A.C. 2002. Secure program
partitioning. In Proceedings of ACM Trans.
Comput. Syst. 20, 3 (August 2002), 283-328.

[24] Garg, V., Stock, A. v., & Owen, K. OWASP
Guide Project. Retrieved February 04, 2012
from The Open Web Application Security
Project:
https://www.owasp.org/index.php/OWASP_G
uide_Project

[25] Google Web Toolkit,
http://code.google.com/webtoolkit

[26] Web application security consortium. 2004.
Web Security Glossary. (2004, February 23)
Retrieved from
http://www.webappsec.org/projects/glossary/

[27] What is SQL Injection?. Retrieved April 05,
2012, from
http://www.cgisecurity.com/questions/sql.sht
ml

[28] The MITRE Corporation. Common
vulnerabilities and exposures (CVE)
database. Retrieved from
http://cve.mitre.org/data/downloads/

[29] Gerner, N., Yang, F., Demers, A.J., Gehrke,
J., Riedewald, M., Shanmugasundaram, J.:
Automatic client-server partitioning of data-
driven web applications. In SIGMOD
Conference(2006)760-762

http://code.google.com/webtoolkit
http://www.webappsec.org/projects/glossary/
http://www.cgisecurity.com/questions/sql.shtml
http://www.cgisecurity.com/questions/sql.shtml
http://cve.mitre.org/data/downloads/

