
IEEE SYSTEM JOURNAL 1

A tailored authentication
and key management for smart grid

Hasen Nicanfar, Student Member, IEEE,

Abstract—Smart Grid (SG) is a vulnerable system and can
be attacked even from aboard, attacks that may cause different
level of costly issues and harms on the society as well as on the
system devices. Furthermore, in SG we have a variety of sub-
systems and applications as well as networks which are working
together as a System of System (SoS) model. Therefore one of
the most challenging topic in the SG development is security and
privacy. Designing a mutual authentication scheme and then a
key management protocol are the first tailored steps of designing
and implementing the security aspects of any system like SG.

In this paper we improve and implement the Secure Remote
Password protocol to reach a mutual authentication scheme
between a Home Area Network (HAN) Smart Meter (SM) and an
authentication server in SG using an initial password. We propose
using the Public Key Infrastructure for the SG communications,
for instance between SM and aggregator (outside of HAN). Also,
in order to have an efficient key management protocol, we follow
an enhanced model of the Identity-Based cryptography so-called
EIBC.

Our proposed mechanisms are capable of preventing various
attacks, and at the same time, improves the network overhead
caused by the key management controlling packets. In fact,
mostly by generating and broadcasting only one function period-
ically by the key generator entity, our protocol simply refreshes
entire nodes public/private key pairs as well as multicast required
keys, if any.

Index Terms—Mutual Authentication; Key Management; SRP;
Security; Smart Meter; Smart Grid; EIBC.

I. INTRODUCTION

PROVIDING a reasonable level of the security and privacy
is one of the most important and challenging topics in the

smart grid (SG) context that has gained research community
attention. SG is a vulnerable system and can be attacked
even from aboard, attacks that may cause different level of
issues and harms on the devices and society [2]. Providing an
authentication scheme and then a key management protocol are
the preliminary tailored steps of designing and implementing
security for any system such as SG [3].

By definition, authentication means binding identity to a
subject or principal. It can be shown by what the subject
is capable of doing (like performing a digital signature), or
knows (like a password or PIN), or has (like a smart card),
or is (biometrics, like fingerprint) . It can be applied to any
computer system or to any network based application. For
instance, when a user wants to use a system, the combination

This paper is based in part on a paper appeared in Proc. of the first IEEE
PES Innovative Smart Grid Technologies (ISGT) Asia conference, as well as a
paper in Proc. of the 2012 IEEE International Systems Conference (SysCon).

Hasen Nicanfar is with the WiNMoS Lab, department of Electrical and
Computer Engineering, The University of British Columbia, Vancouver, BC,
V6T 1Z4 Canada.

E-mail: hasennic@ece.ubc.ca.

of the user name and knowing appropriate and aligned pass-
word provides the user authentication to the server. Moreover,
when two parties want to communicate to each other, they may
have a shared password, which in this case they require to be
mutually authenticated to each other. In general and mostly
in a networking environment, nodes or any two parties should
follow mutual authentication to prevent some of the attacks
(more detail can be found in literature).

After two parties (a client and a server or any two network
nodes) get authenticated to each other, they need to set-up
a secure communication to prevent unauthorized parties
intrusion. To address this demand, they need to protect their
communicating data packets, which normally they use a
security key. Therefore, as a second security requirement,
they need to have a key management protocol to form the
required key/s, and normally, refreshes the key/s. The key
can be (i) symmetric also known as private key infrastructure,
or (ii) asymmetric also known as Public Key Infrastructure
(PKI). In the symmetric key, packets are encrypted and
decrypted with the same key, so sender and receiver should
share the key. However and in the asymmetric key, sender
and receiver use different keys.

Public Key Infrastructure: In the public key encryption,
two keys are introduced and being provided per each entity,
so-called public key and private key. The private key is
supposed to be kept by each entity (Alice) in private and
secret; however, the party’s public key is defined to be
accessible publicly, for instance by Bob. A third party
(Trent) also exists that acts as a Private Key Generator
(PKG)/Certificate Authority (CA). For instance, Trent (or
PKG/CA) issues for each entity an individual certificate
consists of the entity’s private key. Furthermore, system is
inquired to have a solution to distribute the parties’ public
keys. For example, when Bob wants to send a private message
to Alice, he encrypts the message using the Alice’s public
key. On the other end, Alice would be able to decrypt the
received encrypted-message utilizing her own private key.
Furthermore, to make Alice assure of message origin (sent
by Bob), Bob should sign the message. Normally, Bob uses
his own private key to provide a signature, and Alice refers
to the Bob’s public key for verifying the Bob’s signature on
the message.

In above mentioned approach, first of all, Alice needs
to have access to the Bob’s public key as well as her own
private key, which both are generated and managed by Trent.
Also, these keys are required to be refreshed periodically
as per system application, which is also being handled by

2 IEEE SYSTEM JOURNAL

Trent. Thus, Trent regenerates keys and informs the parties
frequently. The public key should be distributed to the entire
parties, and the private key needs to be sent to each one
individually and via a secure communication. More detail
about the managing public/private key pair as well as key and
certificate refreshment can be found in the literatures e.g. our
references. To overcome the public key distribution overhead
cost, one solution is Identity-Based Cryptography (IBC).

Identity-Based Cryptography: In IBC, system can pro-
vide a unique function F (one-way like a hash function) to
the entire parties, which can be applied to each party’s ID to
obtain the party’s public key (1). For instance, a party/entity ID
can be the party’s email address, phone number or IP address,
or combination of them. Then, PKG select a random number
s, and applies it to each node’s public key and product will
be the node’s private key (2).{

PubK(ID) = F (ID) (1)
PrvK(ID) = s ∗ F (ID) = s ∗ PubK(ID) (2)

Let us consider Alice and Bob to be our two parties in the
following three main sections of the IBC:

1) ID-Based Encryption (IBE):
a) Setup (Initialization): PKG randomly selects the sys-

tem non-shared secret value s and also generates PKG’s public
key and makes it publicly accessible (e.g. by Alice and Bob).

b) Private key extraction: PKG generates the Alice’s
private key and sends it to Alice via the secure channel.

c) Encryption: Bob applies function F to the Alice ID
to obtain the Alice’s public key, and encrypts his message to
Alice using the Alice’s public key.

d) Decryption: Alice utilizes her own private key to
decrypt the encrypted message received from Bob.

2) ID-Based Signature (IBS):
a) Setup (Initialization): Similar to the IBE mechanism.
b) Private key extraction: Similar to the IBE mechanism.
c) Signature: Bob signs the message utilizing his own

private key, and then sends the signature along with the
message to Alice.

d) Verification: Alice applies F to the Bob ID and ob-
tains the Bob’s public key, and verifies the received signature
from Bob by using the Bob’s public key.

3) Key Refreshment: In order to refresh the keys to
maintain system security, periodically PKG reselects s and
recalculates all entities’ private keys and informs them one
by one via the secure channel. Since this algorithm takes
time, normally PKG supplies the parties with a valid-time
that presents the starting time of using the new keys.

Password utilization for authentication: Referring to our
discussion about the authentication and prior to any key
management, parties should be able to start communicating
in order to authenticate each other. For instance, they form a
session key to receive their private key from the server (CA,
PKG or Trent). There are different solutions assuming to have
a preliminary password, which we review some of them under
the Password Authenticated Key Exchange (PAKE) protocol
umbrella.

One of the solution to form a session (symmetric) key is
W. Diffie and M.E. Hellman (D-H) algorithm [4], also know
as D-H algorithm. To protect D-H algorithm process from
different attacks like Man-In-The-Middle attack, a solution
was proposed by S. Bellovin et al. in 1992 [5]. They utilized
a password to assure required key establishment messages
secrecy. Later on, D.H. Seo et al. developed a two steps
PAKE protocol called SAKA. First, both parties obtain a
number as product of their shared password, and its reverse.
Then, each party picks a random number and multiplies it
to the shared number in the first step to be used in D-H
algorithm. Their model comprises two more steps for key
verification [6]. More PAKE protocols have been developed
during last couple of decades, for instance in [7], [8], [9],
[10] and [11]. In [12], utilizing a verifier is proposed which
assumed having a trusted server as a third party for supporting
key establishment. Each party has an individual password
and server holds the appropriate verifier. Entities establish
temporary session keys used to establish the final symmetric
key in this four phases protocol.

In this paper we improve and implement the Secure Remote
Password (SRP) protocol [13] to reach a mutual authentication
between a Home Area Network (HAN) Smart Meter (SM) and
a security or authentication server (SAS) in the SG system,
by utilizing an initial password. We propose using PKI for the
SG communications, for instance between SM and aggregator
(outside HAN communications). Also, in order to have an
efficient key management protocol, we follow an enhanced
model of IBC, which has been designed recently in our lab
so-called EIBC [14]. We will review more detail of SRP and
EIBC in Section II.

Our proposed mechanisms are capable of preventing various
well-known attacks, for instance Brute-force, Replay, Man-In-
The-Middle and Denial-of-Service attacks. Furthermore, we
improve the network overhead caused by the key management
controlling packet. In fact, in most of the key refreshment
cases, only by generating and broadcasting one function
periodically by the SAS server that is in charge of the key
generation, our protocol simply refreshes the entire nodes’
public/private key pairs as well as multicast required security
keys, if any.

Following to the introduction and in Section II, we review
the literature respecting to our work. In Section III and
Section IV, we present our mutual authentication scheme and
key management protocol respectively, which are analyzed in
Section V. Section VI is our conclusion and also our future
works followed by list of our references.

II. LITERATURE REVIEW

In this section, we review some of the related researches to
our paper, such as EIBC and SRP. Also, we study some of the
recent proposals about the SG network and structure.

A. EIBC: Enhanced Identity-Based Cryptography
Recently we have designed and proposed EIBC in [14]. Fol-

lowing to the above mentioned definitions, we review the areas
that we have proposed some modifications/developments:

NICANFAR et al.: A TAILORED AUTHENTICATION AND KEY MANAGEMENT FOR SMART GRID 3

a) One-way/Hash function F (.): EIBC makes this func-
tion to be a dynamic Fi(.). Periodically, PKG broadcasts a
function fi(.) that applies to Fi(.) to obtain Fi+1(.), the
system new one-way function. In this case, all of the public
keys and private keys are being updated. Nodes need to apply
fi(.) to any nodes’ public key to obtain the updated node’s
public key. Also, each node uses fi(.) as part of the private
key refreshment algorithm (we will explain this part shortly).
Note that ”i” presents system iteration and current/live system
state. {

Fi+1(.) = fi(Fi(.)) (3a)
PubKi(ID) = Fi(ID) (3b)

b) System secret value ”s”: In IBC, system secret value
s is the product of a True Random Number Generator (TRNG)
managed (and being kept secret) by PKG. EIBC makes s
combination of two values, such as a non-shared TRNG value
si kept by PKG (4a), and a Pseudo Random Number Generator
(PRNG) value s̃i shared by the entities (4b), with similar
duties. {

si+1 = fi+1(si) (4a)
s̃i+1 = a ∗ s̃i + b (4b)

c) Seed value vs. End value: We specified some of
the parameters to have a seed value. For instance, PKG has

”public key seed value” (P̃ ubK
i

PKG) and ”public key end
value” (PubKi

PKG). Moreover, each entity, like Alice, has a

private key seed value (P̃ rvK
i

A) and a private key end value
(PrvKi

A). PKG produces the seed values (5a) and (5b), and
entities perform (6a) and (6b) to obtain the live end values in
each system iteration:

Seed values :

 P̃ ubK
i

PKG = si.P̆
i
PKG (5a)

P̃ rvK
i

A = si.Fi(IDA) (5b)

End values :

 PubKi
PKG = fi(s̃i).P̃ ubK

i

PKG (6a)

PrvKi
A = fi(s̃i).P̃ rvK

i

A (6b)

d) Key refreshment periods: As it can be seen from the
last two points, our system in EIBC requires to update different
values. To be more precise, we need to produce a new function
fi(.), manage a new value for s̃i, have the set up values
a & b refreshed, and finally, having/refreshing a new value
for si same as the original algorithm in IBC. Hence, EIBC
comes with three timers such as Short, Medium and Long term
refreshment (STR, MTR LTR) timers to cover the appropriate
processes.

• STR process: Every STR, PKG generates a new func-
tion fi(.) and makes it publicly accessible, along with a
Valid-Time (VT) which is the start time of moving to the
new system state (i → i + 1). At the time of VT, each
party refreshes s̃i based on (4b), refreshes Fi(.) based on
(3a) in order to have others’ refreshed public keys. Also,
the party refreshes the PKG’s public key based on (7a)
and (7b), as well as its own private key based on (7c) and

(7d), utilizing the updated values of s̃i+1 and Fi+1(.):

P̃ ubK
i+1

PKG = fi+1(P̃ ubK
i

PKG) (7a)

PubKi+1
PKG = fi+1(s̃i+1).P̃ ubK

i+1

PKG (7b)

P̃ rvK
i+1

A = fi+1(P̃ rK
i

A) (7c)

PrvKi+1
A = fi+1(s̃i+1).P̃ rvK

i+1

A (7d)

• MTR process: Every MTR, PKG reselects system
PRNG parameters a & b along with the requires VT, and
shares them with the entire parties to be used starting by
VT.

• LTR process: Every LTR, PKG reselects the system
non-shared secret values along with system shared secret
values and updates one-way function Fi, in order to
refresh the whole keys (entire parties’ public and private
keys). PKG also refreshes each party’s private key, and
inform the party along with a VT via a secure channel.

Note that LTR process is similar to the IBC key refreshment
algorithm. As it has been analyzed in the [14], EIBC simulta-
neously improves key management process overhead cost and
system security level.

e) Multicast group key support: There are two proposals
to support the required multicast key in EIBC. We only
review the solution that we are using in this paper as part
of Section IV, which is Multicast group source/receiver key
pair. Each multicast group is identified by a Multicast Group
ID (MID) that is being used similar to an entity’s ID to obtain
group’s Source Multicast Key (SMK) referring (1). At the
same time, referring (5b) and (6b), each group would have
a Receiver Multicast Key (RMK) managed by SAS. Each
Multicast Group Source (MGS) entity receives that group’s
SMK and RMK, and grants membership to a Multicast Group
Receiver (MGR) entity by sending RMK to the new MGR.
Therefore, when a MGS wants to send a packet to MGRs,
MGS encrypts the messages by SMK. On the other side, a
MGR uses group’s RMK to decrypt the received message. In
order to have a multicast packet’s source authentication and
because a SMK can be compromised, MGS signs the messages
using its own entity (original) private key (PrvKi

ID).
The other solution provided by EIBC is having a Muticast

Group Pseudo Random Number Generator s̃mi, similar to s̃i,
with its own setup values am & bm and initial value s̃m0.
Receivers use s̃mi to refresh the group’s RMK.

B. Secure Remote Password (SRP) Protocol

SRP in [13] is an authentication and key-exchange protocol
for secure password verification and session key generation
over an insecure communication channel. The SRP protocol
utilizes Authenticated Key Exchange (AKE), and stores ver-
ifiers instead of the passwords. AKE uses a one-way (hash)
function to compute the verifier and stores it in the server.
Also compromising the server and finding the verifier is not
enough, since the password is still required.

First of all in SRP, the user enters a password and then
a verifier is computed from the password among with a
randomly generated password salt. Then, the user name, salt

4 IEEE SYSTEM JOURNAL

and verifier are stored in the server database. Finally, the client
can now be authenticated to the server, as it is depicted in
Fig. 1. All of the calculation are in modulo p, and in some
of the steps, one-way hash function is being used. If M1 and
M2 in the seventh and eighth steps are the same in both ends,
the mutual authentication is successful on the client as well
as the server sides.

C. Smart Grid network structure

Our study shows that SG most probably will have IPv6
technology in a mesh based topology for outside of the HAN
domain. For instance, [15] assumes system has an IP-Based
communication between a SM and the utility’s Meter Data
Management. One of the latest research in this area is proposed
by H. Gharavi et al. in [16]. They designed a mesh based
architecture for the last mile SG, compromises two domains.
One of the domains, which is in the Neighbourhood Area
Network (NAN), supports communication between HAN and
AMI head-end via data aggregation point and mesh-relay-
station if required. This mesh based topology is in-charge of
expanding the coverage area of the network by using multiple
hops connection.

III. SMART GRID MUTUAL AUTHENTICATION (SGMA)

In this paper, we concentrate on communication outside
of the HAN domain. These data communication could be
between SMs of different homes, or between SM and an
aggregator or a controllers like a NAN controller, and for
sure between SM and security server SAS which provides
the required authentication and key management supports. We
also cover the key management for the unicast, multicast and
broadcast communication desired by any application in these
scope.

Followings are our assumptions used in this paper in order
to design the mechanisms:

𝑈𝑠𝑒𝑟𝑁 𝐴𝑙𝑖𝑐𝑒

Alice/Client Bob/Server

𝑥 = 𝐻𝑎𝑠ℎ(𝑠𝑎𝑙𝑡, 𝑝𝑤)

𝑆 = (𝐵 − 𝑔𝑥)(𝑎+𝑢𝑥)

Start

𝑠𝑎𝑙𝑡, 𝑔, 𝑝

𝑠𝑎𝑙𝑡, 𝑣𝑒𝑟 = 𝐿𝑜𝑜𝑘𝑢𝑝(𝑈𝑠𝑒𝑟𝑁𝐴𝑙𝑖𝑐𝑒)

S
te

p
#

I

II

III

IV

V

VI

VII

VIII

𝐴

𝑢 = 𝑅𝑛𝑑 . , 𝑏 = 𝑅𝑛𝑑 .
𝐵 = 𝑣𝑒𝑟 + 𝑔𝑏𝑚𝑜𝑑 𝑝 𝑢, B

𝑎 = 𝑅𝑛𝑑 . , 𝐴 = 𝑔𝑎 𝑚𝑜𝑑 𝑝

𝐾 = 𝐻𝑎𝑠ℎ(𝑆) 𝐾 = 𝐻𝑎𝑠ℎ(𝑆)

𝑀1 = 𝐻𝑎𝑠ℎ(𝐴, 𝐵, 𝐾) 𝑀1 𝑀1
?
=

 𝐻𝑎𝑠ℎ 𝐴, 𝐵, 𝐾

𝑀2 = 𝐻𝑎𝑠ℎ(𝐴, 𝑀1, 𝐾) 𝑀2
?
=

 𝐻𝑎𝑠ℎ 𝐴, 𝑀1, 𝐾
𝑀2

𝑆 = (𝐴 ∗ 𝑣𝑒𝑟𝑢)𝑏

Fig. 1. Original Secure Remote Password Protocol

Security Server

Controller
Aggregator

Fig. 2. Smart Grid Topology for Outside HAN domain

• Network topology between nodes is a wireless mesh
network topology.

• Nodes have the required unicast technology support to be
able to communicate with each other via multiple hops.

• Each node has a unique IP address (most likely IPv6),
which can be used as node’s ID. This ID can be assigned
by a technician at the set up time.

• SM acts as a HAN gateway which separates outside and
inside HAN domain communication.

• SM has a unique serial number SN and an initial secret
password pw for authentication. On the other hand,
SAS holds the appropriate ver and salt (referring SRP
protocol) for each SM.

• Each node initially comes with a Hash(.) function, and
values g & p to be used in SRP algorithm, or can receive
them from the technician at the set up time.

• Nodes are all synchronized respect to the current time,
and the new installed SM would be able to synchronize it-
self with others, using a valid synchronization algorithm.

• SAS server is responsible for the authentication as well
as key management.

Fig. 2 presents topology of our study domain area, which we
used the researches in [16]. Referring Section I, we assume
a new SM (mutually) authenticates itself to the SAS server,
which will receive its private key as well.
Definition: Let us define system state (i, j):

Dimension ”i”: This dimension represents the system
functions fi(.) & Fi(.) as well as random values si & s̃i.

Dimension ”j”: This dimension represents PRNG set up
values aj & bj used in (4b). Note that in (4b), we only showed
a & b for simplicity.

A. Mutual Authentication Scheme

Depicted by Fig. 3, our SPR based mutual authentication
scheme consists of three following steps:

NICANFAR et al.: A TAILORED AUTHENTICATION AND KEY MANAGEMENT FOR SMART GRID 5

𝑆𝑁𝑆𝑀,𝐼𝐷𝑆𝑀,𝐴

SM SAS
𝑎 = 𝑅𝑛𝑑 . , 𝐴 = 𝑔𝑎 𝑚𝑜𝑑 𝑝

S
te

p
#

I

II

III

𝑣𝑒𝑟, 𝑠𝑎𝑙𝑡 = 𝐿𝑜𝑜𝑘𝑢𝑝 𝑆𝑁𝑆𝑀 ,
𝑢 = 𝑅𝑛𝑑 . , 𝑏 = 𝑅𝑛𝑑 . ,
𝐵 = 𝑣𝑒𝑟 + 𝑔𝑏𝑚𝑜𝑑 𝑝 ,
𝑆 = (𝐴 ∗ 𝑣𝑒𝑟𝑢)𝑏,
𝐾 = 𝐻𝑎𝑠ℎ 𝑆 ,
𝑀 = 𝐻𝑎𝑠ℎ 𝐴, 𝐵, 𝐾 ,

𝑆𝑃𝑟𝑚(𝑖,𝑗)
= 𝑖, 𝑓𝑖 , 𝐹𝑖 , 𝑠 𝑖 , 𝑗, 𝑎𝑗, 𝑏𝑗 , 𝑆𝑇𝑅,𝑀𝑇𝑅, 𝐿𝑇𝑅 ,

𝑃𝑟𝑣𝐾 𝑖
𝑆𝑀 = 𝑠𝑖 ∗ 𝐹𝑖 𝐼𝐷𝑆𝑀 ,

𝑃𝑆𝐴𝑆 = (𝑇𝑆1, 𝑆𝑃𝑟𝑚 𝑖,𝑗 , 𝑃𝑟𝑣𝐾
𝑖
𝑆𝑀)

𝑠𝑎𝑙𝑡, 𝑢, 𝐵,𝑀,
𝑒𝐾 𝑃𝑆𝐴𝑆 ,

𝑆𝑖𝑔𝑛 𝑃𝑟𝑣𝐾𝑖𝑆𝐴𝑆

(𝑒𝐾 𝑃𝑆𝐴𝑆)

𝑥 = 𝐻𝑎𝑠ℎ 𝑠𝑎𝑙𝑡, 𝑝𝑤 ,
𝑆 = (𝐵 − 𝑔𝑥)(𝑎+𝑢𝑥),
𝐾 = 𝐻𝑎𝑠ℎ 𝑆 ,

𝑀
?
=
𝐻𝑎𝑠ℎ 𝐴, 𝐵, 𝐾 ,

𝑃𝑟𝑣𝐾𝑖𝑆𝑀 = 𝑓𝑖 𝑠 𝑖 , 𝑃𝑟𝑣𝐾
𝑖
𝑆𝑀 ,

𝑃𝑢𝑏𝐾𝑖𝑆𝐴𝑆 = 𝐹𝑖 𝐼𝐷𝑆𝐴𝑆 ,
𝑃𝑆𝑀 = (𝑇𝑆1, 𝑇𝑆2, 𝑖, 𝑗, 𝐼𝐷𝑆𝑀, 𝐼𝐷𝐻𝐴𝑁)

𝑒𝑃𝑢𝑏𝐾𝑖𝑆𝑟𝑣 𝑃𝑆𝑀 ,

𝑆𝑖𝑔𝑛 𝑃𝑟𝑣𝐾𝑖𝑆𝑀

(𝑒𝑃𝑢𝑏𝐾𝑖𝑆𝐴𝑆 𝑃𝑆𝑀)

Fig. 3. Smart Grid Secure Remote Password Protocol

1) Step I: Firstly, new SM select a random value a and
calculates A = ga mod p. Then, SM sends A along with its
own SN and ID to the SAS server.

2) Step II: SAS performs the following steps as per receiv-
ing the first packet:

• SAS lookups the values ver & salt respect to the serial
number SN .

• SAS picks random values u & b, and calculates B =
ver + gb mod p.

• Then, SAS computes S = (A ∗ veru)b followed by K =
Hash(S) and verifier value M as M = Hash(A,B,K).

• Furthermore, SAS computes the SM’s private key seed

value P̃ rvK
i

SM .
• Finally, SAS sends values salt, u, B & M along with

encrypted and signed system’s parameters (like pseudo
random number generator) to SM.

3) Step III: SM performs the following steps when receives
packet II from SAS:

• SM calculates x = Hash(salt, pw), and then S = (B −
gx mod p)(a+u.x).

• Then, SM calculates K as K = Hash(S), and then
verifies K based on the received M , by comparing M
with Hash(A,B,K).

• If condition holds, SM has the valid symmetric key K
shared by the server. So, SM is able to decrypts received
values, as well as is capable of checking the signature.

• Finally, SM obtains its own private key and sends an en-
crypted and signed acknowledgement to the SAS server.

At this point, SM and SAS are mutually authenticated to each
other, and SM has received system parameters as well as its
own private key.

IV. SMART GRID KEY MANAGEMENT (SGKM) PROTOCOL

Our proposed key management follows EIBC key manage-
ment algorithm. Thus far (assuming Section III is done), nodes

have the appropriate PKI-Based keys to be used for unicast
and node-to-node secure communication. In this section, we
introduce our key refreshment mechanism as well as a solution
for required multicast and broadcast keys (including their
related key refreshment).

A. Key refreshment

Referring EIBC presented in Section II and reference [14],
system requires three timers STR, MTR and LTR values to be
set. We manage transferring these timers as part of the system
parameter in our authentication scheme algorithm.

1) Short term refreshment process: Our short term refresh-
ment process is presented by Fig. 4. Referring to the STR timer
value, system runs this process in a regular basis to change
the system state from (i, j) to (i + 1, j).

Fig. 4. Broadcasting an encrypted and signed packet in the STR process

a) SAS duties: First of all, SAS generates a new function
fi+1 according to the new system state i + 1. Then, SAS
prepares a packet Pti+1

STR containing the fi+1 function, Time
Stamp TS of the fi+1 production, Valid Time V T of the new
system state’s dimension i and its new value i+1. Then, SAS
applies the original Hash(.) function to its own live public
key to obtain a symmetric key Ki,j (8):

Ki,j = Hash(PubKi
SAS) (8)

Note: We will use this technique to handle the broadcasting
key in the broadcast key management part at the end of this
section.

Finally, SAS broadcasts the encrypted packet Pti+1
STR uti-

lizing the Ki,j key, along with the controlling STR command
CSTR. SAS also signs this values with its own live private
key in order to have source authentication.

b) SMs duties: As soon as a SM receives the broad-
casting information identified by CSTR, obtain the SAS’s live
public key to verify the signature. Assume the signature is
valid, SM calculates the symmetric key Ki,j following (8)
and decrypts the received packet Pti+1

STR. Then, SM controls
the system iteration i+ 1 making sure is one after the current
iteration, along with the TS checking to prevent the replay
attack. Finally and prior to the V T time, SM utilizes the
fi+1 and follows the defined EIBC’s short period refreshment
process (Section II) steps and uses the equations (7a)-(7d) to
refresh the appropriate keys and starts using them from V T .

2) Medium term refreshment process: Our medium term
refreshment process is presented by Fig. 5. Based on the MTR
timer value, system runs this process in a regular basis to
change the system state from (i, j) to (i, j + 1).

6 IEEE SYSTEM JOURNAL

Fig. 5. Broadcasting an encrypted and signed packet in the MTR process

a) SAS duties: Referring EIBC definitions in Section
II, first of all SAS generates a new PRNG’s pair values
aj+1 & bj+1 for the new system state (i, j + 1). Then, SAS
prepares a packet Ptj+1

MTR containing the aj+1 & bj+1 values,
Time Stamp TS of the pair values aj+1 & bj+1 production,
Valid Time V T of the new setup values plus the new system
state’s dimension value j + 1. Then, SAS applies the original
Hash(.) function to its own live public key to obtain a
symmetric key Ki,j (8). Finally, SAS broadcasts the encrypted
packet Ptj+1

STR utilizing the Ki,j key, along with the controlling
MTR command CMTR. SAS also signs this values with its
own live private key in order to provide source authentication.

b) SMs duties: When a SM receives the broadcasting
information identified by CMTR, obtains the SAS’s live public
key to verify the signature. Assume the signature is valid, SM
calculates the symmetric key Ki,j following (8) and decrypts
the received packet Ptj+1

MTR. Then, SM controls the system
state’s dimension j + 1 making sure is one after the current
one (j), along with the TS checking to prevent the replay
attack. Finally, starting by the V T time, SM updates its s̃i
setup parameters.

3) Long term refreshment process: Our long term refresh-
ment process is presented by Fig. 6. Referring to the LTR
timer value, system follows this process to go from the (i, j)
state to the (0, 0) state. It obvious the SAS needs to generates
the system parameters as well as each node private key and
inform them one by one.

Fig. 6. Unicasting an encrypted and signed packet in the LTR process

B. Multicast key mechanism

We propose multicast group key source/receiver pair key,
referring to Section II. We define Multicast Group Source
(MGS) key that is being used by each group source to encrypt

the multicast packets. Furthermore, we define Multicast Group
Receiver (MGR) for each group that is being used by group
receivers to decrypt the messages that are encrypted by MGS.
Our assumptions are:

• Multicasting group is group/source based, and joining is
initiated by receiver.

• Each group is identified by a unique Multicast Group ID
(MID).

• SAS is in charge of the multicast group key management.

Beside the MGS and MGR keys, each group has a pub-
lic/private key pair as well, to be used in multicast join
algorithm. Like any party and since each group has a MID,
system manages this key pair referring to (5a), (5b), (6a) and
(6b).

For MGS and MGR, we define multicast group state (k & l)
similar to the (i & j) state. Furthermore, gk(.) & Gk(.) similar
to the fi(.) & Fi(.) functions, and finally mk & m̃k along with
cl & dl similar to the si & s̃i and aj & bj items in our original
system design for the unicast communication.

Gk+1(.) = gk(Gk(.)) (9a)
mk+1 = gk+1(mk) (9b)
m̃k+1 = cl ∗ m̃k + bl (9c)
SMKk = Gk(MID) (9d)
RMKk = (m̃k, (mk ∗Gk(MID)) (9e)

1) Establishing a multicast group: A MGS that wants to
form a multicast group (i) sends the request to SAS. (ii) SAS
provides MGS with the group initial parameters set including
MID, m̃0, RMK0 & G0(.) along with the group’s private
key seed value as per (5b) and (6b) respect to MID. (iii) Then,
MGS picks c0, d0 & g0(.) and makes the group parameters
set completed for the multicast group (0, 0) state. From this
point, MID will be publicly accessible by the parties which
wants to join. Note that MGS is in charge of gk(.) production.

2) Joining multicast group: Our join algorithm presented
by Fig. 7 follows the following steps:

MGR MGS

St
ep

II

 1MGRPubK
TS,MID,IDe i

MID

































ll1k1kk

kMGSMGR21

vKPr

ll1k1kk

kMGSMGR21

PubK

d,c,l(.),g(.),G,RMK

,m,k,ID,ID,TS,TS
Sign

,
d,c,l(.),g(.),G,RMK

,m,k,ID,ID,TS,TS
e

i
MGS

i
MGR

I

Broadcasting

Unicasting

 l,k,TS,MID,IDe 2MGRPubK i
MGS

Unicasting
III

Fig. 7. Joining a Multicast Group

NICANFAR et al.: A TAILORED AUTHENTICATION AND KEY MANAGEMENT FOR SMART GRID 7

a) Join request (Step I): The new MGR applies the cur-
rent system state function Fi(.) to MID and obtain appropriate
public key (3b). Then, MGR sends (broadcasts) its join request
encrypted by the group’s public key, including its own ID.

b) Grant membership (Step II): Since only MGS has the
group’s private key, MGS decrypts the packet and replies with
the membership grant, which consists of the group parameter
set m̃k, RMKk, Gk+1(.), gk+1(.), cl, dl and at the same
time, sends the gk+1(.) to the entire (current) group members
to support forward secrecy. For source authentication purposes,
MGS signs this packet with its own node private key.

c) Acknowledgement of membership (Step III): Firstly,
MGR verifies the signature, and then accept the information
and joins the group if it is a valid one. Then, MGR sends
an acknowledgement to the source notifying the source that
MGR has successfully joined the group.

3) Key refreshment process: The reason for the key re-
freshments could be different for the multicasting keys. For
instance, joining and leaving a member initiates demand to
system refresh the keys in order to support forward and
backward secrecy, as well as providing multicast overall key
secrecy. However, we suggest a similar algorithms in both
mentioned demands. To be more precise, multicast group has
a similar timers set by the system administrator as per group
establishment purposes and application requirements. Refer-
ring to our unicast refreshment processes, we only describe
the multicasting’s relevant points.

• For multicasting forward and backward secrecy concern-
ing nodes join/leave situation, we follow a short term
refreshment process.

• Recalling our aforementioned discussion, MGS is in
charge of gk(.) generation and distribution (a similar
short term key refreshment), proceeding from the (k, l)
to (k + 1, l) state.

• MGS is in charge of m̃k set up values cl & dl, addressing
a similar medium term key refreshment, moving from the
(k, l) to (k, l + 1) state.

• SAS is in charge of similar long term key refreshment
process, moving from the (k, l) to (0, 0) state. SAS
provides appropriate parameters including keys to the
MGS, and then MGS unicasts them to the members
utilizing their unicast public/private key system.

C. Broadcast key mechanism

Refer to our unicast medium term key refreshment process,
we apply the system original Hash(.) function to the SAS’s
public key to obtain a symmetric key. Since the SAS’ public
key is dynamic and changes periodically according to the fi(.)
function, only the system members would have the live value
of the SAS’s public key.

V. EVALUATION

In this section, we present our mechanism evaluation using
Automated Validation of Internet Security Protocols and Ap-
plication (AVISPA) security analyzer. Furthermore, we review
the adversary model, his/er interests and capabilities to attack
the system. Then we review the system security against

attacks. At the end, we study our system security overhead
cost and improvements, concerning key management.

A. Authentication scheme evaluation using AVISPA

We use the original model already existed in the AVISPA
library and then modified it based on our needs respect to our
mechanism, which part of the codes are shown by Fig. 8:

Fig. 8. AVISPA code

Since AVISPA does not support the arithmetic calculation,
we are ended with xor & exp (raise to a power) operators
besides other security functions. Therefore, we used xor
instead of ” + & − ” (addition and subtraction) that we
required for our authentication, which is shown by the figure.
The result of the evaluation presented in Fig. 9) shows the
mechanism is secure/safe. To be more precise, the symmetric
key that we prepare at the end of our authentication to be used
for sending the system parameter by SAS to SM is a valid and
safe key. The system parameters are consists of the PRNG and
its setup values a & b, as well as SM’s seed private key.

Fig. 9. AVISPA evaluation result

8 IEEE SYSTEM JOURNAL

B. Adversary analysis

The adversary objective to attack the system can be defined
as gaining access to the system resources, for instance SAS or
any of the SMs. Prior to the attack, s/he may have different
situation. For instance, we consider two overall situations: s/he
does not have (first case) or has (second case) a full control
on one of the SM devices including the SM’s password.

1) First case: In this case, all adversary may know or be
able to find, is the server ID. Thus, if s/he wants to attack
the server, like performing a Denial of Service (DoS) attack,
s/he can send several requests (Fig. 3) to the server for the
authentication. As soon as server receives the requests, will
check the database for the (ver, salt) pair associated with
every request. If SAS does not find any, won’t take any
further actions and assumes it is an attack. If s/he sends the
request with valid ID & SN (can be stolen from a SM), SAS
may find the (ver, salt) values and proceeds by sending the
response and goes to the next step of the scheme. Since the
adversary does not have the appropriate password, s/he is not
able to obtain the key and decrypt the packet. However, SAS
is remained by an open session. Note that SAS sends a time
stamp (TS1) among other information. SAS can close the
session if the appropriate acknowledge is not receiving by a
time period. Furthermore, even for preventing attack up to this
point, SAS can allow only a limit number of the authentication
request. So, sending a high volume of requests does not cause
any issue on the server.

The adversary may try a replay attack by forwarding any
other previous SM’s acknowledgement answer to the server.
This solution does not help the adversary since the acknowl-
edgement should encrypted and signed utilizing the valid
and appropriate system public and private keys. Also, the
acknowledgement consists of the time stamp and ID of SM,
which is not the valid one for the adversary’s authentication
session.

The next option for the adversary is performing a brute-
force attack and gets access to the encrypted packet. Brute-
force attack takes time. If it takes more than session expiry
time, the attack is not causing any issue. In the best situation,
s/he can move to the on-line dictionary attack to speed up, or
performs an off-line dictionary attack and find the session key,
and finally obtain an expired private key for a not valid SM.
However, s/he would gain access to the system parameters,
and if SAS has not run LTR process yet, s/he can keep going
and makes the system parameters valid and fresh. At the end
of the day and using any of the aforementioned exercises, the
adversary is not able to compromise the server, since s/he can
only communicate with others and if others sends information
to her/im, s/he is able to decrypt the packets. Furthermore,
since our mechanism follows SRP protocol technique (hash
function), our authentication provides forward secrecy and the
adversary is not able to find out the original password.

To perform a Man-In-The-Middle (MIMT) attack as another
option for the adversary, s/he may receive the first packet
and change the value of A. However, s/he won’t be able to
decrypt the second packet coming from the server, because
s/he requires the victim’s password to obtain the symmetric

key K.
The other option is compromising the server by an attack

like social engineering. Attacking a node with this attack is
almost equivalent to gaining control on the SM, which we will
study it as part of the second case. So, attacking the server
does not give the adversary access to the SMs’ passwords
since we only keep the verifier (and salt). However, if SAS
records and keeps the nodes’ private key (to be more precise,
the nodes’ private key seed value), s/he will have the entire
SMs’ private keys. This attacks is a costly attack on the server
and unfortunately works in almost all of the situations. If
SAS only generates the private keys and not keeping them,
in some extent will prevent the attack harms on the previous
generated keys. However, the adversary will be able to attack
the new SMs. The best solution in this situation is managing
the server security very well. For instance by changing the
server password more often or similar solutions.

2) Second case: In this case, an adversary has full control
on one of the nodes (SM). Hence, s/he can proceed the au-
thentication and receive his/er own private key from the server
along with the system parameters, like PRNG and system’s
functions. In this case, the adversary may communicate with
others, including SAS, without any issue. However, it does
help her/im to gain access to the server. General speaking,
being in this case does not help an adversary to improve
she/his chance to attack, referring to the aforementioned
discussion in the first case. For instance, s/he can run a brute-
force attack by having a valid private key and communicate
with others to brute-force their private key. Although refer to
our above discussion, SAS may change the keys before the
attacker finds a valid one. In this case, off-line dictionary can
work because the adversary has the system parameters and like
fi(.) and PRNG and can find the live private key. However
just by performing one LTR process by SAS, system prevents
the adversary of a successful attack.

C. Other security characteristics

Recall our discussion in Section III, a mutual authentication
is performed since SAS needs to know the password verifier,
and on the other side, SM needs to know the password. Both
ends require one of these values to calculate the session key.
In terms of attacks resilience, we refer to study in previous
subsection, about the most well-known attacks such as Brute-
force, DoS, Replay on-line & off-line dictionary and MITM
attack, which covers part of the attacks resilient summary
presented by TABLE I. We also refer to the above section
about the social engineering attack that may work partially on
the server; however, compromising a SM does not help the
adversary to attack the whole system.

Unknown key-share attack: The second packet of the
authentication scheme presented in Fig. 3 is encrypted by
symmetric key K. Encryption of this packet by SAS shows
SAS has the key, and decryption the packet by SM and
acknowledging the SAS proves that SM has the key as well.

Compromised impression resilience: Referring to our
analysis at the first of this section, finding any SM’s private

NICANFAR et al.: A TAILORED AUTHENTICATION AND KEY MANAGEMENT FOR SMART GRID 9

TABLE I
SUMMARY OF ATTACKS STUDY

Attack Resilience
Social engineering attack 4 & 6

Brute-force attack 4
Replay attack 4

DoS attack 4
MITM attack 4

On-line dictionary attack 4
Off-line dictionary attack 4

Unknown key share attack 4
Compromised impression attack 4

Denning-Sacco attack 4
Key privacy & insider attack 4

Ephemeral key compromise impersonation 4

key does not help an intruder to obtain any other node or
SAS’s private key .

Denning-Sacco attack resilience: If an intruder some-
how finds a symmetric key in middle of the authentication,
since the key is the product of a hash, which is a one-way
function, s/he would not able to find the original password or
even the verifier. Furthermore, finding a private key does not
help the adversary to find a symmetric key of the authentica-
tion session.

privacy & insider attack resilience: Since we are using
the PKI, each key is only known by the owner (and maybe
server). Other nodes only know the SM’s public key, which
in fact required by them to communicate to the SM. Even
if other nodes in between relay the packets, since the packets
are encrypted and signed, they cannot have access to the SM’s
private key.

Ephemeral key compromise impersonation: Let us as-
sume an adversary perform an off-line dictionary attack or
brute-force or even social engineering and obtains a SM’s
password. Because the password is only one of the required
values for the key formation, the adversary still is not able to
find the session key, or the private key.

D. Communication and network performance analysis

In our design, we took advantage of the SPR, PKI and IBC
approaches. Each one brings some benefits to the mechanism.
Beside, our improvements on each of those have brought more
benefits to the system.

Firstly, we have improvement on the required packet de-
livery in our authentication scheme. To be more precise,
we reduce the number of packet delivery from six to three
packets. Furthermore and during this three packets handling,
we manage delivery of the entire system parameters as well
as the new SM’s private key. Our design shows that the
authentication scheme presented here is fast and secure.

Secondly, implementing private key infrastructure in a dis-
tributed system causes providing a symmetric key between
every two nodes that may need to communicate to each other.
From other point of view, if the number of the nodes that
wants to have communication with a single node increases, it
causes the node to keep and manage a high number of keys
(one per each), which is the case in the SG system. However,
PKI requires one pair key per entity in spite of a higher key
size. In fact, while a node has its own private/public pair key,

it is sufficient for the node and others to perform a secure
communication.

Also, IBC improves the public key distribution overhead
cost in a PBI, which we are taking advantage of this technique
in our design. Furthermore, we have designed and utilize an
improved version of the IBC so-called EIBC for this model.
The most important benefit of using EIBC in this design, and
in any other system, is private key distribution and refreshment
overhead cost improvement. In EIBC, in most of the time the
PKG entity only broadcasts a packet instead of unicasting it
that causes the system overhead cost improvement. Indeed, in
two (STR and MTR) of three key refreshment processes the
broadcasting is being used, also the unicast (LTR) model is
required less often comparing to STR and MTR processes.

Last but not the least, our mechanism can be easily imple-
mented in any system and platform. Since nodes only require
to have their own private key, and only know with whom they
want to have communication with, expanding this model does
not require further action. Based on the nodes population and
application that are going to be run on the system, a system
administrator can tune up the security and overhead utilizing
the timers value as well as size of the key. Furthermore and
referring to our EIBC design in [14], the system administrator
even can turn any of the features off, like PRNG. All s/he
requires to do is for instance sets a = 0 & b = 1. On the other
hand, if s/he wants to turn the periodic distribution function
fi(.) off, s/he can set fi(x) = x. This flexibilities makes our
mechanisms applicable to the variety of systems and platforms.

VI. CONCLUSION

In this paper we stated our tailored mutual authentication
and key management mechanisms for the smart grid system.
The proposed flexible design addresses the system’s required
security aspects, and at the same time, handles the process
in en efficient fashion. The saving resources caused by our
mechanism can be used to handle more data and/or to in-
crease the security of the system by refreshing the keys more
often. Consequently, more key refreshment can give us this
opportunity to use smaller key size, which again brings more
improvement on the entities’ resources.

To improve and develop our design more, we will apply
the Elliptic Cure Cryptography (ECC) approach to our mech-
anism. ECC-based approach decreases the size of the keys
without decreasing the system security level. Furthermore, we
will adapt this design to the inside customer domain in smart
grid system.

ACKNOWLEDGEMENT

This work was supported in part by the Natural Sciences and
Engineering Research Council (NSERC) of Canada through
grant STPGP 396838.

REFERENCES

[1] NIST Smart Grid, CSWG, Introduction to NISTIR 7628 Guidelines for
Smart Grid Cyber Security, Published by www.nist.gov/smartgrid, Sept.
2010.

10 IEEE SYSTEM JOURNAL

[2] P. McDaniel and S. McLaughlin, ”Security and Privacy Challenges in
the Smart Grid”, IEEE Security Privacy, Vol. 7, No. 3, Pages 75-77,
May/Jun. 2009.

[3] H. Nicanfar, P. Jokar and V. C.M. Leung, ”Smart Grid Authentication and
Key Management for Unicast and Multicast Communications”, in Proc.
IEEE PES ISGT, Perth, Australia, Nov. 2011.

[4] W. Diffie and M.E. Hellman, ”New direction in cryptography”, IEEE
Transaction on Information Theory, Vol IT-11, Pages 644-654, Nov. 1976.

[5] S. M. Bellovin and M. Merritt, ”EKE: Password-based protocols secure
against dictionary attacks”, in Proc. Research in Security and Privacy,
Oakland, CA, May 1992.

[6] D.H. Seo and P. Sweeney, Simple Authenticated Key Agreement Algo-
rithm, an Electronic Letter, pp 1073-1074, Vol. 35, Issue 13, June
1999.

[7] H. Yeh and H. Sun, ”Simple Authenticated Key Agreement Protocol
Resistant to Password Guessing ACM SIGOPS Operating Systems Review,
Vol. 36, Issue 4, Pages 14-22, Oct. 2002.

[8] W. Juang, S. Chen and H. Liaw, ”Robust and Efficient Password-
Authenticated Key Agreement Using Smart Cards”, IEEE Transaction
on Industrial Electronics, Vol. 55, No. 6, Pages 2551-2556, Jun. 2008.

[9] D. Xiao-fei, M. Chuan-gui and C. Qing-feng, ”Password Authenticated
Key Exchange Protocol with Stronger Security”, in Proc. ETCS, Wuhan,
Hubei China, Mar. 2009.

[10] L. Liu and Z. Cao, ”Improvement of One Password-Based Authenticated
Key Exchange Protocol”, in Proc. ISISE, Wuhan, Hubei China, Mar.
2009.

[11] M. B. MBarka, L. Granboulan and F. Krief, ”Using OTP with PAKE:
An Optimized Implementation of a Synchronization Window”, in Proc.
IFIP NTMS, Paris, France, Feb. 2010.

[12] Z. Zhang and Q. Zhang, ”Verifier-based password authenticated key
exchange protocol via elliptic in Proc. ICISIT, Beijing, China, Dec. 2010.

[13] T. Wu, ”The Secure Remote Password protocol”, in Internet Society
Network and Distributed Systems Security Symposium (NDSS) pages
97111, San Diego, CA, Mar. 1998.

[14] H. Nicanfar and V. C.M. Leung, ”EIBC: Enhanced Identity-Based
Cryptography, a Conceptual Design”, in Proc. IEEE SysCon, Vancouver,
BC, Mar. 2012.

[15] J. Wang and V. C. M. Leung, ”A Survey of Technical Requirements and
Consumer Application Standards for IP-based Smart Grid AMI Network”,
in Proc. ICOIN, Kuala Lumpur, Malaysia, Jan. 2011.

[16] H. Gharavi and B. Hu, ”Multigate Communication Network for Smart
Grid”, Proceedings of the IEEE, Vol. 99, No. 6, pages 1028-1045, Jun.
2011.

Hasen Nicanfar (GS’11) received his BASc. de-
gree in electrical engineering from Sharif University
of Technology in 1993, and his MASc. degree in
Computer Networks (electrical and computer engi-
neering) from Ryerson University in 2011. In 2011,
he has started his PhD program at graduate school
of the University of British Columbia in electrical
and computer engineering.

From 1993 to 2010, he served market in different
positions including IT & ERP manager & consultant,
project manager, production engineer & manager

and business & system analyst.
Currently, he holds the position of research assistant in WiNMoS Lab.

His research interests are in the areas of system & network design and
management, security and privacy, cryptography, routing protocol design for
wireless communication and Smart Grid system.

