
Firewall Policies Management: A Survey Paper
1st Author

1st line of address
2nd line of address

Telephone number, incl. country code

1st author's E-mail address

2nd Author
2nd author's affiliation

1st line of address
2nd line of address

Telephone number, incl. country code

2nd E-mail

3rd Author
3rd author's affiliation

1st line of address
2nd line of address

Telephone number, incl. country code

3rd E-mail

ABSTRACT

Firewalls are critical components of network security and

have been widely deployed for protecting private networks.

A firewall determines whether to accept or discard a packet

that passes through it based on its policy. However, most

real-life firewalls have been plagued with policy faults,

which either allow malicious traffic or block legitimate

traffic. In this paper we had an overview on some of the top

recently published papers in this topic. We also suggested

some points as the future works in this important field.

Keywords

Firewall policies, Policy faults, Fault localization.

1. INTRODUCTION

Nowadays, with the global Internet connection, one of the

most important aspects of networks is their security both in

research and industrial communities. Due to the increasing

threat of network attacks, firewalls have become more

important elements than ever not only in enterprise and

large scale networks but also in small-size networks with

any kind of applications such as business, institutions, and

home networks.

Firewalls have been the very first defense for secure

networks against attacks and unauthorized traffic. Its task is

ideally to filter out unwanted network traffic coming from

or going to the secured network. The filtering decision is

based on the firewall policy which is a set of ordered

filtering rules defined according to predefined security

policy requirements. This sequence of rules follow the first-

match semantics where the decision for a packet is the

decision of the first rule that the packet matches A firewall

is often placed at the entrance between a private network

and the outside Internet so that it can check all incoming

and outgoing packets and decide whether to accept or

discard a packet based on its policy. However, most real-

life firewall policies are poorly configured and contain

faults (i.e., misconfigurations) [1]. A policy fault either

creates security holes that allow malicious traffic to sneak

into a private network or blocks legitimate traffic and

disrupts normal business processes. In other words, a faulty

firewall policy evaluates some packets to unexpected

decisions. These kind of packets are called misclassified

packets of a faulty firewall policy. Therefore, it is important

to find ways that can assist firewall administrators to

automatically correct firewall faults.

There are many different hot issues about the firewalls since

their role is really important in terms of security of the

networks. In this section, we are going to clarify motivation

and also the scope of this survey paper by introducing the

subjects clearly.

One of the most important issues is automated correction of

firewall policies faults. It has been always a critical point

because these policies which are modeled as a sequence of

rules can have huge effect on creating security holes. On the

other hand, it can also block the allowed traffic which can

be also assumed as a weak feature of the firewalls. Both of

the mentioned problems are originated from a cause which

is technically called firewall misconfigurations. For solving

this problem, other experts in field of network security have

suggested different solutions such as semi-automatic and

automatic correction of firewall [2]. There are different

challenges in solving this problem such as categorizing,

locating and correcting the faults, and we covered their

ideas and contributions by analyzing the works and defining

their weaknesses and strengths.

Fault localization is also one of the issues that are covered

in this paper [3]. It is a very important branch of software

testing which worth to be analyzed as a part of our study.

Some new approaches have been introduced that have the

ability to reduce needed effort and time for fault localizing

of firewall policies. They can be effective for optimization

of different kinds of tools developed for management of

firewall policies since all of them frankly deal with

detection of fault locations.

Another alternative for management of centralized and

distributed firewalls policies is to develop new tools which

assist administrators to purify the firewall policy from rule

anomalies [4]. Another expected advantage of such tools is

to help the administrator to manage legacy firewall policies.

This should be actually done without any need for prior

analysis of rules. This idea can be more effective when it is

combined with usable security concepts. It causes to

develop tools that are so user-friendly that even not

Hootan Rashtian

M.Sc. Student

Canada

University of British Columbia

rhootan@ece.ubc.ca

professional end-users can use them and perform some

levels of firewall management. Because of the importance

of usable security, we cover some of the latest works in this

really interesting field.

One important related aspect to optimization of firewall

policies is process of testing. To help ensure the correctness

of firewall policies, researchers have developed various

firewall analyses and testing tools [6]. The main function of

these firewall analysis tools is to detect anomalies in

firewall policies based on common patterns of firewall

configuration mistakes.

Although such firewall analysis tools are useful, the

weakness of such tools is that the “anomalies” may not be

mistakes and also the number of “anomalies” could be too

large to be practically useful [7],[8]. Several firewall policy

testing techniques have been proposed [9]. However, these

techniques for firewall policies testing are not based on

well-defined testing techniques in software engineering

[10].

For example, these techniques do not consider coverage

criteria for firewall policy testing. We will cover this

aspect. It is a very critical part of the work since the reliable

evaluation of all the techniques designed to improve the

security of firewalls will not happen unless some stable

testing tools for this special purpose have been developed.

From another point of view, firewall policies faults can be

prevented by using new design methods [11]. In new design

methods, common weaknesses of firewalls should be

considered [1]. Usability aspect of firewall tools also can

give an insight in terms of creating new design methods [5].

Thus, this topic itself has enough importance to be covered

in our work since it reduces the overall needed effort of

securing networks.

All the above topics will be discussed in this survey project

both in terms of qualitative and quantitative analysis. The

results of the work hopefully can give the readers an insight

about the literature and also introduce the open questions

and future works. Table 1 shows the titles of selected

topics.

The following parts of the paper will be as follows:

Section 2 is mainly about the works that have been done so

far about automated correction of firewall policies faults

and analysis of different recent methods available in this

field and their features and weaknesses. In section 3, the

idea of fault localization will be covered based on top

recent works. In section 4 is basically about the tools for

administrators assistant and advantages and disadvantages

of some of the recently developed tools for this aim.

Testing of firewall policies will be more discussed in

section 5. As the last field that is discussed in this paper,

new design methods of firewalls will be covered in section

6. Finally, we will have a conclusion in section 7 where

some general conclusion and future works are discussed.

2. Firewall Policy Model
Firewall policy has a common model [3] which consists of a

set of rules. Each of the rules has a format as follows:

⟨predicate⟩→⟨decision⟩(1)

A ⟨predicate⟩ defines a collection of packets over a definite

number of fields. Fields are showed in the format of F1, …,

Fn. On the other hand, ⟨decision⟩ of a rule is related to the

evaluation of predicate and it can be true or false. If

predicate is evaluated to true, then the decision will be

appeared.

A packet is basically a tuple (fv1, ..., fvn). As it was

mentioned earlier, it is defined over a finite number of

fields F1... Fn. fvi is a variable whose values of fvi variable

are within a D(Fi)domain. It is common to mention values

in fields to their integer values to make representation

format as simple as possible. The predicate itself can be

represented:

(F1∈S1)∧...∧(Fn∈Sn)(2)

In this representation, Si denotes a part of domain D(Fi).

Each of (Fi ∈ Si) is called a ⟨clause⟩, which should be

evaluated to correct or incorrect. It is very important that a

firewall policy uses a standard semantic for its functionality

which is called the first-match semantic. In this semantic,

there is an iteration which continues until the time it reaches

the end of the rules. This iteration starts from the first rule

by looking for its predicate to see whether it has been

evaluated to true or not. If this condition is satisfied then

the decision that corresponds to this rule is derived and

returned; otherwise it goes to the next rule in the set of

policies.

There are some other expressions that are technically used

in this field. For example, conflict or anomaly, overlap,

shadowing, generalization, correlation and policy conflicts.

Conflict means as follows [4]. When we talk about policy

conflict, we are talking about an entity that is associated

with a collection of rules. These rules have the ability to

derive a packet space which is common among them. The

point here is that rules in this collection match all the

packets and at least two of the rules have different

decisions.

Matching of a packet with different rules is called overlap.

Shadowing happens when a rule cannot effect on the

decision for passing or failing the packet because of the

preceding rules that match the packet. Generalization means

when a subset of matched packets for this rule is also

matched by preceding rules but with different decisions.

Correlation happens when there is an intersection between a

rule and some other rules but the matched packets by this

intersection are not assigned the same decision.

Redundancy occurs when there are more than one rules in

the policy with same effect.

3. Automated Correction of Policy Faults

Although automatic correction of firewall policy sounds

very useful, it has its own difficulties to be correctly applied

on the firewall. These difficulties can be categorized in

separate groups as follows [2]:

 Counting the number of faults and defining types

of faults

 Locating the origin of the fault among torrents of

rules in the firewall

 Correcting the faults without making any side-

effects which affects other rules and their

functionalities

To resolve the problems of these difficulties, many

researchers have introduced different techniques and

approaches.

In [2], the authors tries to provide a solution that correct the

faulty firewall policies in an optimized way which means in

a way that needs minimum modifications. For this aim, they

provide a model which covers all common policy faults.

The model contains five fault types: wrong order, missing

rules, wrong decisions, wrong predicates and wrong extra

rules. The interesting point of their work is that they

propose a correction technique for each of the categories in

the model. The techniques are basically proposed based on

the test of firewall policy. Test cases are made by

generating packets to examine firewalls. There are different

ways that have been suggested by researchers for packet

generation. They use the test packet generation approach of

[2] which consists of three different techniques. The

provided approach in [6] for this aim tries to achieve the

highest possible structural coverage. First technique is

random packet generation. For using this technique,

domains of each of policies should be defined and packets

will be generated randomly based on domain scopes

without using the policies. The benefit of this technique is

the high speed of packet generation. On the other hand, the

lack of achieving high coverage is notable because of its

random inherent. The second technique generates packets

based on local constraint solving. Unlike the previous one,

it analyzes each rule separately and checks conditions of

that rule without considering probable effects of other rules.

Although it has been considered to be far from randomness,

but there are still some problems with this technique. First,

because of overlaps of predicates, some entities may not be

covered. Second, it is not clear that which entities will be

ignored and which will not. Therefore, it is not possible to

decide for generating other packets to cover those entities.

The third technique is packet generation based on global

constraint solving. In this technique, overlaps of predicates

are considered by analyzing the policy and also the

constraints of the policy. It has better efficiency in terms of

covering the target entities, but the limitation is the large

amount of needed time for analysis. In [3], authors provided

another automatic way for packet generation by introducing

rule representation and traffic space segmentation and a

segmentation algorithm for firewall policies which make it

possible to generate effective test packets for the aim of

optimization but the point here is that the proposed

approach was used for testing the implementation of

firewall and it was not necessarily for automatic correction

of firewall policies. As another way of test generation, [10]

used a specification centered approach. In this case,

definitions of test case specifications are required and these

could be consequences a packet might be dropped or other

potential scenarios. After that test cases are generated to

cover transitions of states in firewalls and connected

networks. In general their approach is capable of supporting

different scenarios that are designed using the execution

history of the system. It is not clear in their work that how

they can handle cases that the number of test cases with

special specification get very large. This weakness is

somehow common as we can see in the following part.

The next challenge in test generations is the huge number of

generated packets. Since the task of classifying the test

packets are done manually, too huge number of generated

tests will make it too time consuming and somehow

impossible to check all of them. They also provided two

algorithms. For this reason, [6] used a technique which was

firstly proposed by [12]. In this technique, the main goal is

to decrease the number of generated packets without

affecting the quality of them. In other words, this reduction

should not lead to a notable loss in terms of the structural

coverage. What is done in this test reduction phase is

basically to remove those packets that do not increase the

coverage based on previously defined metrics. This is done

by evaluating packets one by one. The point here is that,

since this algorithm works greedily, the result will not be

necessarily optimized. By optimized result we mean the

lowest number of packets which meets the same level of

coverage as the given set.

As the next step, it is time to correct the faulty firewall

policy using least possible number of modification.

Basically it is a difficult task as we discussed earlier about

the nature of firewall policies. In [2], authors suggests to

algorithms for this purpose. First one is a greedy one which

works in an iterative way to use the best correction

technique among the previously mentioned five techniques

for maximizing the number of passed tests for each fault.

As it is shown in Figure 1, all five techniques are used at

first. Then it is calculated that how many of test packets are

passed or failed. The one with a higher efficiency is chosen.

This process is continued until the time that there is no

more failed packet. It worth to mention that it does not

provide the optimized solution always. Especially when it

adds new rules to the policy rules, it approaches to the

Figure 1: Greedy Algorithm, Adopted from [2]

worst case by maximizing the length of needed

modifications.

For solving this weakness, they provide an improved

version of the algorithm. In the improved algorithm they

split the techniques into two levels. The reason is that in

this way it is possible to make sure that increasing the

number of modification is necessary. As it is seen in Figure

2, in this algorithm, classified test packets are passed to

wrong order correction, wrong decision correction and

wrong extra-rule correction techniques to see if they can

decrease the failed packets or not. If the answer is no then

they are passed to the other two techniques which are

missing rule correction and wrong predicate correction.

Again it continues until the time that there is no failed test.

Another notable feature in their work is that administrators

are allowed to manually change the flow of the algorithm.

For example they can first try their preferred techniques. It

is very good since make the approach more usable to be

embedded in firewall administrative tools.

They also applied their approach on real life firewalls and

showed that for three categories of fault model, their

approach was highly successful in terms of detecting. There

is another interesting research in this area [12]. In this work,

the rules are analyzed and then structural coverage metrics

are used to find faulty rules in the policy. Although the

results show high efficiency, it seems that there some

problems with their work. First is that just wrong decisions

and predicates are covered in it. As the second one, it has

been assumed that firewall policy has only one fault which

is far from reality. The last weakness is the most important

and highly related to this section. It does not provide the

user any solution for detected problems in the firewall

policy and this cannot be claimed as a full automatic

approach.

As we discussed in this section about top approaches in

automation of firewall policy correction, still some parts of

the works such as classifying the test packets are done

manually which means that the whole process is not %100

automatic.

Figure 2: Improved algorithm, Adopted from [2]

4. Fault Localization
A very important part in management of firewall policies is

to fix the faults. For this goal, first the root of the fault

should be defined in the debugging phase of testing. The act

of finding the root of the fault is technically called fault

localization[13]. If testers and debuggers want to perform it

manually, it will take a very long time because of the

inherent complexity of fault localization and the huge

amount of rules. Thus, efficiency of localizing the faults

should be considered as a factor of quality. In [3], Hwang

proposes an approach for this task in order to decrease the

cost of debugging and fault localization. The approach is

based on a fault model which is suggested by the authors

consisting Rule Decision Change (RDC) and Rule Field

interval Change (RFC) type faults. Each of them shows a

kind of incorrectness. RDC shows that the decision is

correct or incorrect about a special rule. RFC also shows a

false definition of an interval in a rule. It worth to mention

that in this approach, it has been assumed that policy has

just one fault which is not a realistic assumption. The

overall flow of the approach starts by inspection of those

test cases that have not made the correct decision. If they do

not include those types specified in the fault model, some

other rules will be named as the potential tricky rules. As

the main idea, the number of rules to be inspected is

decreased by analyzing the characteristics come from faults.

Still this is not the end of the game. After the previous step,

the remaining rules are ranked based on previously defined

metrics such as structural coverage. A more detailed review

on [3] shows some more interesting aspects of the proposed

idea. The process of reducing the number of rules to be

inspected and ranking them has been categorized in three

separate techniques. These are basically come from some

heuristics or better to say some rules of thumb. The first

technique is called Covered-Rule-Fault Localization [3].

The idea is useful when there are so many rules that are

covered by failed test cases. In this case, it has been

suggested to policy testers to give the highest priority to the

earliest rule that has been covered. As a very simple

example, consider set of rules in a firewall policy. Imagine

that m>n and nth rule is covered by nth failed test case and

mth rule is covered by mth failed test case. On the other

hand modification of nth rule does not have effect on mth

rule to be covered by mth failed test case or not. Thus, the

nth rule is placed in a higher priority than the mth rule. The

second technique introduce a way for the case that the

earliest-placed rule that is addressed by failed test cases has

no fault. In this special situation, the earliest-placed rule is

in a higher priority and therefore regardless of the

modifications on the faulty rule which has currently a lower

priority, it has still false result as the decision. Thus, the

faulty rule should be assigned a higher priority than the

earliest-placed rule so that it will be observed during the

process of evaluation. After selecting rules by the previous

technique, the third technique will select from them those

with more probability to be faulty one. In this technique, the

idea is that the decisions of faulty rules and other rules

should be different from each other. Imagine that dec1 is

the decision for the clause faulty rule with higher priority

and the dec2 is the decision for the rule with lower priority.

After modifying of the clause of faulty rule, dec1 should be

different from dec2 since dec2 is unexpected for that failed

packet.

In related to the previous technique, the authors introduced

a way for giving priority to rules based on analyses on the

clause coverage and the probability to be faulty regarding

those analyses. The idea here is based on a fact which is

inferred from the analysis on the clause coverage for the

rules that are faulty according to failed packets. This fact

says that at least equal or smaller number of clauses is

evaluated to false in faulty rules. Based on this observation,

they have suggested a list of rules from the lowest value of

clause coverage to the highest one for the task of

inspection. We use their example to show the idea more

clear. As it is shown in figure 3, 9 out of 12 test cases are

passed and 3 out of 12 are failed. Since fourth and fifth

rules are covered by failed tests, the first step is to look for

fault(s) in the fourth rule because it is the earliest-placed

rule covered by faulty tests. By knowing that there is no

fault in this rule, the next step is to apply rule reduction.

Because first three rules have higher priority than R4, we

consider them as candidates. Reason is that any problem

with these rules may cause an incorrect result by R4. In this

case R1 and R3 are chosen since they have different

decisions than R4. In last step, we should see which one has

a higher rank to be chosen for inspection.

Another work that is close to the aforementioned approach

is Marmorstein et al.’s work [3]. In this paper, the authors

provided two techniques not only to detect the firewall

policy errors, but also repair them. In other words, the

proposed techniques facilitate the act of tracing errors and

finding the roots of errors. In order to use these techniques,

the user specifies the desired behavior of the firewall using

logical assertions. The syntax for assertions is derived from

the query language explained in [14]. One useful advantage

of assertion analysis is that it allows generation of relevant

counterexamples. These counterexamples provide a context

for the error which can often help the administrator

discover why a failure has occurred.

As the first technique, they provided a way which generates

some packets as examples to show weaknesses and

requirements of the firewall policies. Their second

technique makes a history log of rules which helps the

administrators and policy testers to find the root problem.
For this aim, more accurate information are collected about

the particular rules that cause a problem or an error by

creating a log consists of history of the rules. They named it

history map. This map has a duty to match each failed

packet to the set of rules that potentially pass or fail it. By

using the history map, it is possible to associate packets in

an assertion’s fail collection with a fewer amount of rules

for filtering. Most probably the number of rules is smaller

in comparison with the total number of rules in the whole

policy. It means that workload for administrators and policy

testers will be decreased in terms of inspection and they

will not need to inspect the whole set of rules exhaustively

anymore. Instead of that, they will just focus on the special

areas that are suggested by the history map and they will

omit the unrelated rules.

 In comparison with the previous technique, this one has

some disadvantages. For instance, it just considers rules that

are related to failed packets while the previous one

considers broader range of rules in RFC fault type. The

output of this one is more like a general list of rules that are

potentially faulty while the previous one decreases the

number of probably rules and gives them priority values. In

[2], which is the next work of the authors of [12], weak

assumption of having only one fault in firewall policy is not

used anymore.

One point that seems to need more work is the improved

algorithm in [2] does not have a notably better efficiency

than the greedy one (%5 better). This exactly points to the

fact that still more works needs to be done about the

optimization of correction.

5. Firewall Tools
Another point of view in managing firewall policies is

developing tools which help administrators in dealing with

this complex and time consuming task. It is aggravated by

change of the environment which can be change of the

entities or topologies or standards in the network. This calls

the urgent need for some special tools and systems to play a

role in managing the firewall policies. In this section we

had a look on some of the recent works in this area that

have received the attention of the community. Also an

overview on usability aspect of firewall systems was studied

as an important feature should be considered for design of

any kind of systems.
Among the recently developed tools, policy anomaly

detectors have been very popular [15, 16, 17, 18, 19]. For

example, FIREMAN [19] and FPA [11, 12] have been

designed to address this problem. But they have still some

limitations that sometimes make trouble for policy anomaly

detection. For instance, just being capable of doing pairwise

anomalies in the long list of firewall rules is not enough.

This limitation is seen in FPA. For FIREMAN, situation is

better since it has been designed in a way that analyzes the

rule that is under test to all preceding rules.
Although it works better than FPA but still it is not the best.

The reason is that it does not consider the subsequent rules,

which mean that this approach does not cover all the rules

so that it is not complete. When an anomaly is detected by

FIREMAN, it is not clear that which of the rules is involved

in this anomaly. All the provided information is about one

of the rules and previous rules before that. On the other

hand, for resolving anomalies in policy, it is necessary to

deal with policy conflicts. The fact here is that it is very

difficult to consider all aspects for removing or modifying

the conflicting rules to make the policy free of conflicts.

Sometimes the degree of difficulty is changed from very

difficult to impossible. If we want to mention more details

about difficulties, we can name the huge number of

conflicts as the first. This is mainly because of the very

large number of rules in firewall policies and also the fact

that they are usually highly related to each other. This fact

brings the second item of difficulty. In some cases some

rules have conflict with many other rules, while there may

be some rules that have fewer conflicts. In addition to these

kinds of problems which are related to the nature of the

firewall policy and its concept, there is another difficulty

which arise from the nature of the way that firewall policies

are maintained. It is very common for firewall policies to be

maintained by different persons as administrators. It itself is

the root of many problems since it is expected for a firewall

policy to have many legacy rules that are created and used

by different persons. It is basically a bad feature since it

affects both sides of the problem. In other words, it causes

new conflicts because other administrators may not know

exact assumptions of their colleagues. On the other hand, it

needs some knowledge about the assumptions and

intentions of different administrators in order to omit the

conflicts correctly otherwise it might have bad effects on

semantics and as the result it will not resolve the conflicts

correctly. Sometimes also administrators use techniques to

decrease the number of rules such as introducing some

overlaps in the rules. This also increases the complexity of

analyzing firewall policies.

In [20], authors introduced a framework for anomaly

management of firewall policies. It works based on a

segmentation technique which is rule-based. It has a higher

efficiency in terms of anomaly detection in comparison with

aforementioned tools and also facilitates effective

resolutions for anomalies. This framework which is called

FAME is also capable of generating the outputs using a

technique for information visualization. This feature is a big

difference regarding the fact that previous tools could not

support this feature and their outputs were just limited to a

general list of potential anomalies. But with visualization, it

is much more convenient for the user to analyze and explain

by using their visual cognition. A grid-based visualization

is provided which facilitate management for administrators

since information are presented in grid format. It is one of

the works in terms of usability since the interface has been

designed regarding the common requirements for

Figure 3: Example of rule reduction and rule ranking,

Adopted from [3]

performing this task. Figure 4 shows snapshots of the

interface of FAME.

In [4], another tool has been developed which gives a very

good insight to administrators about the effects of a specific

change in a firewall policy. In this tool, the input has been

defined to be the configuration of the firewall and the

proposed changed. The output will be the impact of that

proposed change. It seems to be useful since it gives insight

from both sides of the problem. For example, it can show

that by applying a change some packets that were

previously allowed to flow are not assumed to be legitimate

anymore. On the other hand, it can show that also

previously illegitimate packets will be allowed to flow in

the future if the new change is taken place. The foundation

of this tool consists of theorems which define whether the

decision for each packet should be changed or not. A

categorization for potential changes has been used. This

categorization includes four common changes usually

happen in firewall policies: rule deletion, rule insertion, rule

modification and rule swap. Each of aforementioned

theorems corresponds to each type of change. Then, based

Figure 4: Snapshots of usable interface of FAME,

Adopted from [4]

on the theorems, some algorithms have been introduced for

analysis of impact of change. It also provides methods for

the cases that impact of the proposed change is not useful

and has undesirable side-effect. There are some other works

similar to this but the difference is that they have talked

about the change-impact in context of general programs and

software engineering [21] which are completely different

from firewall policy. The authors of [12] have another

paper which is close to this work. In [2], their proposed

algorithm could compare semantics of two firewalls and

could provide the differences between them. The main

difference of their newer work is in efficiency of the

algorithms. One may say that in [2] their algorithm could

analyze the case that administrators apply more than one

change at a time while the newer one cannot handle this

case. Actually it seems that it is not a notable and important

feature since in reality administrators apply changes one by

one at a time. As we discussed earlier in section 3 in more

details, there are other works on firewall tool development.

Most of those approaches and corresponding tools are

capable of doing firewall testing and analysis based on the

known attacks. They cannot usually find faults that do not

let legitimate packets to flow.

Firewall tools are also important from the usability point of

view. As we mentioned earlier in section 1, some parts of

the process of firewall policy management are still

performed manually. On the other hand, it is usually better

to give the administrators the option to stop some automatic

part of the work to do it manually if it is needed. From

another point of view, having a well-organized interface for

flow of the work will help users have a better understanding

of work flow. All of these reasons make it vital for a

firewall tool to have a usable interface. In [5], the author

mentions that the problem of experience of working with

such tools comes from different things. First, it is not a

high-level task as common tasks like programming, system

design and project management. Another one is the high

speed of getting more complex. It is difficult for the user to

understand and then catch up with problems. Although most

of administrators use command line interface as the main

interface, some visualizations are described in this paper as

suggestions to be used. These visualizations can make

configurations more simple. These suggested visualizations

are based on design rules so that they are most probably

usable. Some other works have been done for visualization.

For instance in [22], the proposed tool make it possible for

administrators to see a visualization for some special

packets by just asking about specification of packets. Also

in [23], the low-level task of configuration has been

changed into a really high-level task. Users need to ask their

questions like their daily conversations. It works quite like

an expert system.

As the future work, it seems to be quite a good job if

researchers focus more on qualitative study for usability of

the tools that they have already developed. Having a look

on available papers in this area shows there is not enough

focus on the importance of the fact that how usable these

tools are.

6. Wrap-up:
In this paper we tried to cover important issues that are

related to the firewall policy management. We first

mentioned the importance of the topics as the introduction.

Then, a quick overview on the most common firewall

policy was provided in section 2. After that we reviewed

recent works on automatic correction and fault localization

in two separate sections. It seems that more works is needed

in terms of optimization of algorithms for fault localization

since the improved versions of algorithms do not seem to be

notably better than initial algorithms that they provided

earlier. For automation, still classification of test cases is

usually done by administrators. In firewall tools section, we

tried to have a broader look on the works that have been

done for developing tools. In this section, we also focused

on usability aspect of the developed tools. Although

different works are available for visualization, they are not

evaluated in terms of usability. It might be a good

suggestion to set up some qualitative studies for this aim.

7. REFERENCES

[1] WOOL, A. A quantitative study of firewall configuration

errors. IEEE Computer 37, 6 (2004), pp. 62–67.

[2] Fei, C., Liu, A.X., Hwang, H., Xie, T. 2010. First Step

Towards Automatic Correction of Firewall Policy Faults. In

Proceedings of the 24th USENIX Large Installation System

Administration Conference(LISA 2010), San Jose, CA,

November 2010

[3] Hwang, J., Xie, T., Chen, F., and Liu, A. X. 2009. Fault

localization for firewall policies.In Proceedings of IEEE

International Symposium on Reliable Distributed Systems

(SRDS).

[4] Hu, H. Ahn, G. AND Kulkarni, K. FAME: A firewall

anomaly management environment. SafeConfig '10

Proceedings of the 3rd ACM workshop on Assurable and

usable security configuration (New York, NY, USA, 2010),

ACM, p. 4.

[5] Wong, T. On the usability of firewall configuration.

Submitted to Workshop on Usable IT Security Management,

part of Symposium On Usable Privacy and Security

(SOUPS) 2008, July 23-25, 2008, Pittsburgh, PA, USA.

[6] HWANG, J., XIE, T., CHEN, F., AND LIU, A. X.

Systematic structural testing of firewall policies. In

Proceedings of IEEE International Symposium on Reliable

Distributed Systems (SRDS) (2008), pp. 105–114.

[7] AL-SHAER, E., AND HAMED, H. Discovery of policy

anomalies in distributed firewalls. In Proceedings of IEEE

Conference on Computer Communications (INFOCOM)

(2004), pp. 2605–2616.

[8] LIU, A. X. Change-impact analysis of firewall policies. In

Proceedings of European Symposium Research Computer

Security (ESORICS) (2007), pp. 155–170.

[9] LIU, A. X., GOUDA, M. G., MA, H. H., AND NGU, A. H.

Non-intrusive testing of firewalls. In Proceedings of

International Computer Engineering Conference (ICENCO)

(2004), pp. 196–201.

[10] JURJEN, J., AND WIMMEL, G. Specification-based testing

of firewalls. In Proceedings of International Conference

Perspectives of System Informatics (PSI) (2001), pp. 308–

316.

[11] LIU, A. X., AND GOUDA, M. G. Diverse firewall design.

IEEE Transactions on Parallel and Distributed Systems

(TPDS) 19, 8 (2008), pp. 1237–1251.

[12] E. Martin, T. Xie, and T. Yu. Defining and measuring policy

coverage in testing access control policies. In Proc.

8thInternational Conference on Information and

Communications Security, pages 139–158, 2006.

[13] J.A. Jones and M. J. Harrold. Empirical evaluation of the

tarantula automatic fault-localization technique. In

proceedings of the 20th IEEE/ACM International Conference

on Automated Software Engineering, Pages 273-282, 2005.

[14] R. Marmorstein and P. Kearns. Assisted firewall policy

repair using examples and history. In Proc. of the 21st

Conference on Large Installation System Administration

Conference,pages1–11,2007.

[15] Marmorstein, Robert and Phil Kearns, ‘‘A Tool for

Automated iptables Firewall Analysis,’’ FREENIXTr a c k ,

2005 USENIX Annual Technical Conference, pp. 71-82,

April,2005.

[16] E. Al-Shaer and H. Hamed. Firewall Policy Advisor for

anomaly discovery and rule editing. In Integrated Network

Management, 2003. IFIP/IEEE Eighth International

Symposium on, pages 17–30, 2003.

[17] E. Al-Shaer and H. Hamed. Discovery of policy anomalies in

distributed firewalls. In IEEE INFOCOM, volume 4, pages

2605–2616, 2004.

[18] J. Alfaro, N. Boulahia-Cuppens, and F. Cuppens. Complete

analysis of configuration rules to guarantee reliable network

security policies. International Journal of Information

Security, 7(2):103–122, 200.

[19] F. Baboescu and G. Varghese. Fast and scalable conflict

detection for packet classifiers. Computer Networks,

42(6):717–735, 2003.

[20] L. Yuan, H. Chen, J. Mai, C. Chuah, Z. Su, P. Mohapatra,

and C. Davis. Fireman: A toolkit for firewall modeling and

analysis. In 2006 IEEE Symposium on Security and Privacy,

page 15, 2006.

[21] Ren, X., Chesley, O.C., Ryder, B.G. Using a concept lattice

of decomposition slices for program understanding and

impact analysis. IEEE Transactions on Software Engineering

32(9), 718–732 (2006).

[22] T. Tran, E.Al-Shaer, and R. Boutaba. PolicyVis: Firewall

Security Policy Visualization and Inspection. In poceedings

of 21st Large Installation Sstem Administration Conference.

Nov, 2007.

[23] A. Mayer, A. Wool and E. Ziskind. Fang: A Firewall

Analysis Engine. In Proceedings of IEEE Security and

Privacy, May 2000.

.

