
An Analysis of Web Single Sign-On
Shane Wang

University of British Columbia
Electrical and Computer Engineering

2211 Wesbrook Mall
1-604-822-7932

shane.wang@ubc.ca

ABSTRACT

This survey paper examines the current state of single sign-on

solutions for the web. Results from a security analysis of three

commonly found SSO solutions: Microsoft Passport/Live ID,

OpenID 2.0 and SAML 2.0 will be discussed with a detailed

outline of their authentication process as well as highlights of

security issues with their implementations. Also discussed will be

publicized security vulnerabilities for each of the three SSOs.

Finally, the survey paper will explore two alternate SSOs: Simple

Authentication for the Web (SAW) and Privacy Aware Identity

Management (Web2ID) with similar discussions on their

authentication process and security issues.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Authentication

General Terms

Security

Keywords

Single Sign-on, Passport, OpenID, SAML, Web Single Sign-On,

SSO, Authentication

1. INTRODUCTION
With the proliferation of web-based systems and applications,

end-users are faced with the increasingly common issue of the

need to memorize and keep many unique account usernames and

passwords for each system or application. This poses an

additional challenge to developers and support staff as many end-

users invariably forget account details to less commonly used

systems or many orphaned accounts are created and forgotten. To

complicate the situation further, users commonly choose the same

username and password for multiple accounts thus weakening the

security for these authentication systems [2]. With authentication

being a horizontal requirement that spans across all systems and

applications, the requirement for unique and individualized

accounts for each is unnecessary and overly complex.

Single sign-on protocols attempt to address this issue by allowing

a user to use a single username and password to authenticate

across multiple systems and applications. This is commonly

accomplished by having an Identity Provider (IdP) that maintains

user credentials which are then passed on to Relying Parties (RP)

or Service Providers (SP) to authenticate users. This paper will

provide a brief background on the history and current state of

Web SSO and also an overview of the scope of the research paper.

Three popular Web SSO implementations: Passport/Live ID,

OpenID and SAML will be covered along with details of common

issues and vulnerabilities. Finally, proposed solutions and

alternatives will be covered with a review of proposed

implementations.

2. BACKGROUND
Web SSO solutions were initially developed by various

educational institutions in the mid-1990s. Such examples include

Stanford University’s WebAuth, Cornell University’s SideCar,

and Yale’s Central Authentication System (CAS) were all early

innovators in the field [1].

Commercial solutions did not emerge until Microsoft released

their Passport, precursor to Windows Live ID, which was met

with limited success as a centralized identity system [1]. Security

issues with its implementation were later discovered [1] and its

popularity amongst major systems waned in 2004.

Also developed during the same time period was the Security

Assertion Markup Language (SAML). Established to be an open

XML-based identity system where identities are federated where

websites, also known as Service Providers (SP), relies on user

authentication from another trusted party referred to as an Identity

Provider (IdP). SAML continues to be a popular option amongst

government and educational organizations today and is even

being used in the Shibboleth framework implemented into the

Campus Wide Login used by the University of British Columbia.

OpenID is another popular Web SSO that was developed as an

open-source project with a community driven standardization

process. SAML was often criticized as being too complex and

enterprise centric in its design and implementation which in turn

did not scale as well for internet wide use cases. These points of

contention were all addressed with OpenID. Originally conceived

by Brad Fitzpatrick for blogging, OpenID has since grown to be

one of the biggest Web SSO contenders with support from major

vendors such as Microsoft and AOL [1].

3. SCOPE
Many competing SSO solutions are currently deployed

throughout the internet. SSOs such as Facebook Connect, Liberty

Alliance, Shibboleth, CardSpace and OAuth all have had or

continue to have a wide following. However, many of these

solutions are not SSO centric as some delve into other topics such

as identity federation (Liberty Alliance) and access control

(OAuth) which are all considered out of scope for the study

conducted in this paper. Also, solutions such as Liberty Alliance

and Shibboleth are built with the same design principles as SAML

so security issues and discussions of SAML will also be relevant

to those two solutions. In this paper, the focus of study will be on

Microsoft Passport/Live ID, SAML 2.0 and OpenID 2.0 which

have all had a long history and gained a wide audience with many

users and providers.

3.1 General Issues with SSO
Before investigation into the three more commonly found Web

SSO solutions, the paper will first discuss the general issues

commonly found in all Web SSO implementations.

Identified by Suriadi, “one of the main problems with the model is

user privacy” [7]. In a SSO environment, relying parties (RP) or

service providers (SP) “can also gather information about a user

from the information they get from the identity providers (IdP).

Sharing of user’s information by malicious IdPs and SPs can

reveal a complete user’s identity and activities” [7]. This issue has

caused users to be wary of SSO implementations and is one of the

main reasons for the lack of wide spread adoption [21].

The concern of a single point of failure if the password to a SSO

account is compromised provides an additional deterrence to

widespread adoption [9]. Given the vulnerability to phishing

attacks [14][15], RPs and SPs have been understandably cautious

in adopting a standard solution. When a SP or RP builds their

business model on the user’s ability to authenticate and interact

with their system, many business owners are reluctant to hand

over the responsibility of authentication to a third party. By doing

so, they are placing too much trust and reliance on the IdP and

any security breach or disruption of service at the IdP could lead

to potential disastrous loss of revenue or even legal liability. An

inherent trust must be placed on the IdP by RPs or SPs to ensure

all user information is secure and confidential [5]. RPs and SPs

must assume liabilities associated with these breaches even if they

occur due to improper or negligent practices on behalf of the IdP

[6].

Finally, incentive for SP or RP to adopt a SSO system is also

lacking. Most SPs or RPs “are reluctant to modify their login UI

and process because new login procedures might confuse and

upset existing users” [3]. Switching authentication mechanisms to

a SSO solution means further education of the users is required

and possible loss of user base if the transition is not smoothly

executed. Exacerbating the situation is the lack of demand from

users for a Web SSO solution. Studies have shown users are

already satisfied by their own password managers [4].

3.2 Microsoft Passport/Windows Live ID

3.2.1 Implementation Details
Microsoft Passport was the resulting product after Microsoft’s

purchase of Firefly Technologies in 1998 [22]. Originally

intended as an authentication mechanism for its Hotmail email

service, Microsoft later reintroduced Passport in 1999 as a fully

featured SSO targeted at online shopping sites [24]. The service

architecture involved one or more passport servers which served

as Identity Providers that contained a list of registered users based

on an email identifier and password. Also supported were mobile

device registrations which contained their mobile number and a

custom PIN (Personal Identification Number). All user accounts

are assigned a 64-bit Passport User ID (PUID) for unique

identification. In addition to the user account information,

Passport also stored other details such as address, date of birth

and credit card details [23]. Credit card details were only stored

for use with Passport’s wallet express purchase service. During

account creation, users were able to select the information being

shared with other SPs with the minimal shared identifier being

just their PUID.

Service Providers opting to implement the Passport SSO solution

must first sign a contractual agreement with Microsoft which

requires a compliance testing fee of $1,500 and a $10,000 per

annum provisioning fee [31]. Once accepted, the SP uses a PKI

scheme with the Passport IdP to establish SSL/TLS channels for

communication and authentication. The authentication protocol of

Passport is as follows [23]:

1. User navigates to the participating SP site and clicks to

login.

2. The client browser is directed to the Passport IdP server

address which has been co-branded by the SP. The

unique ID for the SP is sent to the Pasport IdP along

with the SP site URL, usually as a query string.

3. Passport IdP examines the unique SP ID and attempts to

match it to the return SP site URL to ensure only sites

registered for the Passport service can use it for

authentication. Passport IdP examines client browser’s

cookie cache for a “Ticket Granting Cookie” (TGC)

which once decrypted allows the user to skip the rest of

the authentication.

4. If no TGC cookie is found, the Passport IdP requests

user to authenticate with credentials passed to the IdP

via a HTTP Post method using SSL and TLS protocol.

Once authenticated, the IdP places an encrypted, fresh

version of the TGC cookie in the client browser’s cache.

Passport IdP also saves a set of cookies to the client

browser’s cookie cache with user’s PUID and any other

shared information for the SP to use.

5. Client browser is then redirected back to the SP which

decrypts the encrypted information cookie and checks

for authorization.

6. User is then authorized to access the resources at the

participating SP site.

Figure 1: Passport Authentication Process [23]

In total, three encrypted cookies are placed on the client browser’s

cookie cache [23]:

1. Ticket cookie containing the PUID and time stamp

(TGC).

2. Profile cookie containing user profile information the

user has opted to share with SPs.

3. Visited Sites cookie containing a list of sites the user

has signed in to.

All three cookies are encrypted using the Triple-DES (3DES)

encryption algorithm through the use of a shared encryption key

between the IdP and SP and are of type session cookies which are

automatically cleared at the end of the browser session [24]. The

encrypted cookies are transferred from SP to client browser via

the query string of the URL. SP’s have the additional option of

ignoring valid ticket granting cookies and forcing the user to

authenticate for additional security. However, Passport users do

have the option of checking an option to “sign me in

automatically” which is an option to save their credentials,

including their password, to the computer [25].

Table 1: Stored User Information in Passport [25]

Once a user has explicitly chosen to sign out of Passport, the IdP

examines the Visited Sites cookie to identify all SPs the user has

signed into and redirects the browser to each SP to execute a

script that signs out the user and removes the user cookie [25].

The Passport IdP has several mechanisms for preventing attacks.

First, “if a user enters a password incorrectly five consecutive

times, .NET Passport automatically blocks access to the account

for two minutes” [25]. This prevents online dictionary or brute

force password cracking attempts though “a determined and long-

term brute-force attack still represents a potential threat” [25]. As

previously mentioned, SPs requiring additional security has the

option of ignoring valid TGC cookies and requiring the user to

authenticate regardless of cookie validity. Since the authentication

is done through a secure SSL/TLS channel, an attacker would

therefore be unable to use a replay attack with hijacked cookies in

this situation. Finally, for sites requiring even more stringent

security, the Passport IdP provides the option of a two stage sign-

in process where the first stage requires regular authentication and

the second stage requiring a special four digit PIN entry. “A

persistent failed-attempts counter for each user” [25] will track the

number of failed entries and only reset once a user successfully

logs in. “If a user fails five consecutive attempts, the system

disables the user’s security key” [25]. This method addresses the

vulnerability of dictionary attacks present with just the normal

stage one authentication scheme buts prevents an attacker from

launching a DOS attack since they must possess the users regular

sign in credentials.

3.2.2 Security Issues
Since its deployment, Passport has been plagued with a series of

highly publicized security flaws. Many of these details, which will

be discussed, were openly revealed on the internet requiring

Microsoft to make hastily patches. Even though the flaws were

fixed, the damage to Microsoft’s reputation was already done and

many of the online merchants using the Passport service for

online purchases moved away from the platform. Apart of the

exodus from the service were eBay and Monster.com in 2004 as

well as Expedia in 2009.

Also, the SSO received negative publicity from the Electronic

Frontier Foundation’s staff attorney, Deborah Pierce, for privacy

issues relating to access of customer data in 2001 [26]. As a

result, Microsoft moved to update their privacy terms to reflect

proper usage and handling of customer data.

The first publicly revealed flaw of Passport was detailed in the

paper “Risks of the Passport single signon protocol” by

P.Kormann and A. Rubin [22]. First point of their discussion into

the issues with Passport is the general usage of SSL. At the time

of their paper, many browsers such as Netscape had 58 root public

keys which all can issue certificates which are automatically

trusted by browsers. Any of the 58 root public key holders that are

less than vigilant in their certificate issuing could compromise the

integrity of the system by issuing what a browser assumes to be a

legitimate key to an attacker. Another key issue raised is the user

interface of Passport and Hotmail. Hotmail, the email service,

uses the Passport SSO for authentication. The interface for

signing out of Hotmail and Passport were two distinct graphical

user controls once a user has logged in. The user would presume

that logging out of the Hotmail service by using the sign out

control associated with Hotmail would remove their Passport

credential cookies associated with the Hotmail service. Similarly,

using the sign out control associated with Passport would remove

not only their Hotmail service credentials but also all other

Passport related services. The authors pointed out those less

educated users would assume signing out of the Hotmail service

would be enough for signing out. However, their Passport

credentials still be logged in and any attacker with access to the

computer would be able to access all services associated with the

previous user’s Passport account. Furthermore, it was discovered

that the Netscape browser did not properly process a Passport sign

out command. The authors discovered that after signing into

Hotmail with Passport and then attempting to sign out from

Passport did not remove all their locally stored Passport credential

cookies. While the interface had indicated their sign out was

successful and redirected them to the general MSN website, when

they attempted to re-access their Hotmail account, they were able

to do so without needing to re-authenticate. The authors then tried

to repeat this procedure on various other machines with Netscape

which all exhibited the same security flaw. Attempts to reproduce

the issue with Microsoft’s own Internet Explorer were

unsuccessful. The issue was reported to Microsoft and promptly

fixed though it revealed what appeared to be an issue in their

internal testing process that did not cover other commonly used

browsers. Finally, Kormann and Rubin pointed out that the

Passport SSO is highly susceptible to phishing attacks as a “bogus

merchant threat is probably the weakest aspect of Passport” [22].

Setting up a fake web store front and getting signed SSL certs is

easy enough. Creating a fake Passport authentication screen is

also easily accomplished as an attacker can setup a misspelled

domain such as www.pasport.com. Since users are so accustomed

to co-branded SP logins, it is unlikely they will realize the site is

not authentic and reveal their SSO Passport credentials which can

then be sold or exploited by the malicious SP.

In the paper “Microsoft .NET Passport: A Security Analysis”

[25], Oppliger discussed the security flaw discovered by a

Pakistani computer researcher in 2003. Revealed on a full

disclosure security mailing list, the researcher, Muhammad Faisal

Fauf Danka was credited for the discovery. The flaw was

associated with the .NET Passport’s password recovery

mechanism and allowed an attacker to reset any user’s Passport

account password to an arbitrary value through the use of their

email address and an unpublicized web address with the phrase

“emailpwdreset” [25]. It was theorized that this web address and

its function was for internal Passport administrator use only. Once

made public, Microsoft moved quickly to address this flaw though

it is unknown how many users were affected by the issue.

Vulnerabilities to Cross Site Scripting attacks were also

discovered. One method revealed by Slemko [29] allows an

attacker to send a malicious email to a victim using Hotmail. The

email contained an embedded iframe which contained a script to

steal the logged in users Passport cookies. Once stolen, the

attacker can use these cookies by copying them to their own

browser cookie cache and as long as they have not expired yet,

log into other SP. Also troubling is that logging into a merchant

based SP site, an attacker can proceed to the shopping cart

checkout where the Passport Wallet details such as credit card

information where revealed to the user in a confirmation screen

[28]. After this flaw was made public, Microsoft chose to retire

the Wallet feature from its Passport SSO solution offering

completely.

The most recent publicly revealed flaw with Passport (renamed at

the time to Live ID) was related to a flaw that allowed new

registrants to spoof email addresses associated with their Live ID

account. “A critical error was made by the Microsoft programmers

that allows everyone to create an ID for virtually any email

address” [32]. As revealed by Duindam, a new user registering for

a Live ID account can first input a valid email which the Live ID

account confirmation is sent. Before confirming the account at the

original email address, the Live ID account’s registered email

address can be changed to any arbitrary email address. Once

changed, the user can use the original email confirmation to

confirm the Live ID account, thus “the Microsoft system simply

confirms the account, using the new and unowned email address”

[32]. Attackers can then use in conjunction with social

engineering to attack other users, tricking them into believing the

communication is coming from another user, for example that

works at Microsoft with an admin@microsoft.com email address.

Although this security flaw has been fixed by Microsoft, it is

unclear if previously spoofed accounts created through this flaw

were also removed [33]. Without extensive auditing and logging,

Microsoft would be unable to determine which accounts have

spoofed email addresses putting into question the authenticity of

the millions of current Passport/Live ID accounts in existence.

Given all the public flaws exposed and the steady rejection rate

from large adopters of Passport, the SSO system is presently

limited to supporting Microsoft’s own service providers. As noted

by Choo, “Microsoft Passport appears to be losing ground due to

lack of trust, control and privacy; and the proliferation of other

identity management paradigms” [31]. Businesses have opted out

of the Passport SSO paradigm since the “idea of handing over

sensitive data to a centralized “outsider” passport, may not be

comfortable with individual organization” [31].

3.3 OpenID
As previously mentioned, OpenID began as a personal project of

Brad Fitzpatrick, the creator of LiveJournal, in 2005 [37]. Started

as a community standard for web SSO, it has grown and evolved

into a robust solution, currently on version 2.0 of its specification,

which is overseen and managed by a committee composed of both

industry and community members [12]. The solution itself enjoys

enterprise level support from a variety of web company giants

such as Google, AOL, Microsoft, Verisign and Yahoo [37]. Even

though the solution enjoys industry wide support, it is not without

its flaws. Although documented, “the OpenID protocol is complex

and only specified textually in a community standard document”

[12]. The lack of details and ambiguities within its documentation

has resulted in non-compliant and flawed implementations.

The “user-centric” architectural model of OpenID is distinctly

unique from other SSO solutions in that the identity providers are

unique and distributed. Users are free to choose from any number

of IdPs which can then provide authentication credentials to

relying parties or service providers. The protocol does not require

any prior setup and establishment of a relationship between an

OpenID IdP and RP or SP for authentication. The steps for an

OpenID authentication is described below [11][12]:

1. Once a user has obtained an OpenID account from an

OpenID Identity Provider, the OpenID IdP provides the

user with an unique URL for his OpenID account (eg.

https://openid.google.com/john). The user then attempts

to login to a RP or SP that supports OpenID

authentication.

2. The user then provides the RP/SP with his or her

OpenID URL from his OpenID IdP which the RP/SP

confirms by checking for the OpenID Extensible

Resource Descriptor Sequence (XRDS) document.

3. Once verified, the RP/SP contacts the OpenID IdP to

establish a shared secret for verification of messages

received directly from the user.

4. The RP/SP then redirects the browser to the OpenID

IdP’s authentication page.

5. The user is notified of which RP/SP is attempting to

authenticate to as well as a prompt to ask for permission

to allow the IdP to accept authentication request from

the RP/SP. Also passed along with the redirect is the

identification of the RP/SP and the return URL once the

user has been authenticated. The OpenID IdP can

perform an optional RP/SP discovery at this open by

examining the return URL and requesting a XRDS

document from the RP/SP to confirm they are an

OpenID RP/SP.

6. If the user had previously given permission for the

RP/SP to receive authentication credentials from the

OpenIdP and the user is already logged in, the user is

simply redirected back to the RP/SP as authenticated.

7. Once authenticated, the browser is redirected back to

the RP/SP where the RP/SP can directly confirm with

the OpenID IdP authentication details and the RP/SP

can gather specific information is gathered from the user

(identity claim information).

Figure 2: OpenID Authenication Process [11]

From a RP or SP standpoint, the OpenID SSO solution provides

many of the benefits available from other standard SSO. The

removed requirement of managing separate user registration

process is welcomed by many. It also allows OpenID RPs/SPs to

focus on obtaining only the necessary information from end users

for their offering in the form of claims rather than the other

repetitive but often unused personal profile details. This benefit

allows the authentication and registration process to be much

more streamlined and efficient from both the user and RP/SP

perspectives. Additionally, users can also be guaranteed an

additional level of privacy as the OpenID authentication scheme

facilities the exposure of minimal amount of personal information

while RP/SP do not have to worry as much about the accuracy of

their registered user data.

OpenID is not without its drawbacks however. One big issue with

OpenID and the distributed network of OpenID providers is that

RPs/SPs are unable to provide a consistent look and feel

throughout the authentication process. Due to the nature of

multiple OpenID IdP, co-branding on the authentication page is

no available. This shortcoming is one of the main reasons some

large RP/SP such as Yahoo [34] has not adopted OpenID as an

IdP due to the inherit phishing vulnerabilities.

3.3.1 Security Issues
Phishing attacks are a great risk with the OpenID SSO solution

[11][38]. Without the requirement of the RP/SP establishing a

prior relationship with an OpenID provider for authentication, a

malicious RP/SP can easily configure their authentication to

redirect the user to their own OpenID IdP which can be designed

to be visually identical to the legitimate IdP. As previous studies

have shown, when phishing sites use visual deception, majority of

users are unable to recognize the associated dangers and ignore

most warnings and indicators [35]. “From a user perspective, the

user is unlikely to be able to distinguish between an attack setup

and a genuine SSO setup” [12]. After providing their OpenID

credentials to the malicious IdP, the user is then redirected back to

the RP/SP with no knowledge that their OpenID credentials have

been compromised. This is a consequence of the architectural

model where authentication can be done for any number of

untrusted parties. Once compromised, a user’s OpenID account

can then be used by an attacker to access all the RP/SP sites the

user belongs to.

Malicious OpenID IdPs are also another concern [12]. The

malicious IdP can gather and store user credentials and associated

RP/SP for a period of time before either using them or selling

them causing both privacy and security related issues. This type of

theft is both difficult to identify and detect [11]. Although a

similar parallel can be drawn between OpenID IdP and email

providers where the privacy and security concerns are equal in the

presence of a malicious provider, users are much more educated

and capable of identifying trustworthy email providers. Without a

mature vetting process for OpenID IdPs, malicious IdPs will

always remain a big concern.

Another common security concern is the exploiting of the redirect

by malicious relying parties [12]. User credentials can be phished

by a malicious relying party through the use of domain names that

appear similar to the legitimate domain. Once a user visits this

malicious site and attempts to login, the malicious site will pass

along the return URL such that the legitimate RP/SP URL is used

but a url redirect query string is embedded to return the user to the

malicious RP/SP (eg.

http://legitrp.com/redirect?url=http://1egitrp.com Note that ‘l’ has

been replaced by ‘1’). In such a scenario, the OpenID IdP

recognizes the return URL to be one of the trusted RP/SP the user

has defined so the user is not asked for confirmation and can be

automatically logged in. The actual return address however would

be the malicious RP/SP address of http://1egitrp.com. Such an

attack can be avoided by setting up the OpenID IdP to do RP

discovery as described in previous step 5, prior to proceeding on

to authentication. However, this is an optional step that not all

OpenID IdPs implement due to the ambiguous protocol

documentation for OpenID [12]. Review of the OpenID

specification documentation revealed the use of the word

“should” 48 times in describing recommended usage of the

protocol [12]. Bellamy has identified that “many of these should

be changed to must” [12] as providers of OpenID often take these

to be optional recommendations which do not have any security

related relevance to the implementation.

Denial of Service (DoS) attacks are also a great concern for

RPs/SPs [11]. Using a large file or malicious script, an attacker

can pass this along to the RP/SP when prompted for an OpenID

IdP. RPs/SPs would then try to load the entire file or run the

malicious script stressing their server. Countermeasures against

this type of attack would require the RP/SP incorporate

restrictions against the allowed protocols and ports for the

OpenID identity as well as set specific data size limits [11].

Finally, depending on the implementation, OpenID is vulnerable

to Man-In-the-Middle attacks [12]. TLS encryption is

recommended along with RP/SP discovery to prevent such MITM

attacks though not all OpenID instances use these. Without

encrypted messages, adversaries are free to intercept and modify

messages as they pass between OpenID IdPs and RP/SPs.

A recent study by Wang et. al [39] revealed a few instances of

flaws and their exploits with OpenID. Through the use of a

Browser Relay Messages (BRM) analyzer, it was determined that

the message passed to the RP/SP for authenticating the user’s

identity contained non-signed elements that were writable by an

adversary. In their demonstrated exploit, the authors were able to

“cause the IdP to exclude the email element from the list of

elements it signs, which will be sent back to the RP” [39]. Since

the RP did not check that the email element was indeed signed by

the IdP after receiving it, the authors were able to append another

user’s email to the message relayed from the browser and

impersonate and sign into the RP as another account. The flaw

was eventually confirmed and patched by Google in their

implementation of OpenID. A security advisory was also released

shortly after from the OpenID Foundation acknowledging the

issue.

An empricial anaylsis was done by Bellamy et. al. [12] where 32

OpenID relying parties were examined to see if they did

implemented some of the recommended best practices of using RP

discovery support and TLS encryption for both XRDS document

and login. Results were less than ideal as only 8 sites incorporated

all three recommended practices. “This seems to indicate a gap

between how OpenID should be used and how it is used in

practice. Whether or not an OpenID session is secure depends

strongly on the implementation” [12].

Table 2: Vulnerability Statistics of 32 OpenID RP [12]

Analysis of OpenID IdPs raises similar concerns. In order to

combat lax and insufficient OpenID IdP implmentations, the

OpenID Provider Authentication Policy Extension was introduced

in 2008 [36]. The PAPE allows OpenID RP/SP to specify to the

OpenID IdP authentication policies to use such as multifactor

authentication. Using the PAPE extension, OpenID IdPs will

return authentication response indicating if the authentication

policy specified by the RP/SP was met. The short coming of this

method is that malicious OpenID IdPs as well as lazy IdPs will

return false confirmation in an attempt to falsify the authentication

scheme and have their authentication be used by as many RP/SPs

as possible.

The best method of ensuring a secure environment is for OpenID

IdPs and RPs/SPs to maintain and continuously update both a

black list and white light for IdPs and RPs/SPs. RPs/SPs who do

not implement the best practices such as TLS and discovery

should be blacklisted from IdPs. Similarly, IdPs which do not

meet PAPE standards set forth by RPs/SPs should also be black

listed. Although this method is a viable solution in ensuring a

more secure SSO infrastructure, it will not only require an

additional effort in maintaining such lists but also go against the

whole SSO paradigm, thus forcing users to choose multiple IdP

accounts in some scenarios in order to access the full range of

RPs/SPs they require.

Since OpenID is designed to be a “user-centric” solution, the

ultimate responsibility of identity management and security is

placed on the individual users. Users “should choose an OpenID

provider which points out explicitly that the stored data is not

used elsewhere” [11] and that the offered security features are in

accord with their own security awareness” [11]. In addition, users

can also adopt policies where multiple accounts can be created

across various OpenID IdPs. For instances of RPs/SPs where

account privacy and security is not as important, such as forums

and chat sites, users can freely choose between any of the OpenID

IdPs available. “These are also the kinds of accounts which users

more frequently have to register for, and are a large source of

password fatigue problems” [12]. However, for high value

accounts where privacy is important and are related to monetary

transactions such as Facebook and eBay, users can be vigilant and

choose OpenID IdPs which utilize all the recommended best

practices of implementation as well as ones that have a known

reputation.

3.4 SAML
The Security Assertion Markup Language (SAML) is a SSO,

XML encoded framework, currently on version 2.0, developed by

the standardization organization OASIS. The protocol itself

specifies the way security tokens, which contain assertions (or

claims), about a user are passed from an Identity Provider to a

Service Provider though the internet for SSO functionality.

Version 2.0 of SAML is the resulting convergence of previous

version 1.1 as well as the Identity Federation Framework 1.2 (ID-

FF) from Liberty Alliance and Shibboleth 1.3 [40]. In addition,

many large web companies such as Google have adopted the

SAML protocol as the basis for their own SSO solution [18].

The SAML 2.0 protocol defines the various roles similar to

previously discussed SSOs. Users have the ability to create one or

more accounts across many SAML IdPs which can then be used

across many RPs/SPs. Similar to the Microsoft Passport SSO, the

SAML protocol requires that a prior trust relationship be

established between an IdP and RP/SP. Once a trust relationship

has been established, a user can then use their IdP to sign into the

RP/SP. One important concept of the SAML protocol is the use of

an artifact, or token, when communication occurs between parties

[17]. The SAML artifact itself contains encoded data that provide

assertions, or claims, about the user. The following describes the

SAML 2.0 authentication process [16]:

1. User attempts to login to a RP/SP using a SAML 2.0

IdP.

2. The SAML IdP will authenticate the user and create the

appropriate artifact and associated assertions. The IdP

then redirects the user to the RP/SP with the artifact.

3. The user then is redirected and sends the artifact

generated by the IdP to the RP/SP as an identification.

4. The RP/SP receiving the artifact from the user then

sends a SAML:Request message to the IdP to verify the

artifact and request desired assertions specific to the

RP/SP.

5. The IdP receiving the SAML:Request message performs

a lookup to ensure the RP/SP host matches the original

URL of the delivered artifact created after step 1. Also,

the IdP will perform a lookup for the artifact received

from the RP/SP to ensure it has not been used before

and responds using a SAML:Response message to the

RP/SP with the requested assertions. All assertions are

sent in a unique artifact.

6. Once the RP/SP receives the SAML:Response with the

assertions, the RP/SP then determines if user is

authorized to use their resources.

Figure 3: SAML 2.0 Authentication Process [17]

It should be noted that the specifications indicate that when the

RP/SP sends the SAML request at step 4 of the authentication

process, it only does so if the received artifact is parsable, which

requires inclusion of the correct SAML artifacts and that the

artifacts are valid (well formatted with correct version ID and

contains same non-empty SourceID) [18]. Once the artifact has

been checked, the established channel between the RP/SP and IdP

is secure and bilaterally authenticated. Also, the SAML protocol

specifies that the artifacts can only be used once and that RP/SPs

do not store artifacts to avoid replay attacks. However, “if the

transfer of the SAML artifacts to the source (IdP) site fails, the

artifacts are still valid and reusable” [18].

Although implementations of the SAML 2.0 SSO protocol differs

between systems, the overall security depends on two assumptions

which are the trust relationships amongst the parties involved and

the secure transport protocols used for message exchange [17].

The SAML specifications make many security recommendations

which are important for avoiding the commonly associated pitfalls

with SSO implementations. However, this does not mean

implantations all follow these recommendations and that the

associated pitfalls can all be avoided [16].

An important topic for SAML 2.0 implementations is the binding

of the implementation. Binding refers to the way the SAML SSO

will map assertions to transport protocols such as SOAP and

HTTP. Communication between the user and RP/SP as well as the

communication between the user and IdP should be established

through SSL or TLS connections [18]. Under such conditions,

communication between the user and other parties can be

considered secure.

3.4.1 Security Issues
First security issue raised by Grob [17] is associated with Man-in-

the-Middle attacks for SAML IdP’s not utilizing SSL/TLS

encryption. “This lack of certification is a cornerstone of MITM

attacks on the communication between the browser and source

site” [17] whenever the browser first attempts to establish a

connection with the SAML IdP for authentication. Since a MITM

attack can be launched by an adversary at this point, “the two

honest parties cannot distinguish the adversary from the intended

communication partner” [17] from this point forth in the

authentication process. Steps 1 and 2 in the SAML authentication

process are both vulnerable to such an attack.

Replay attacks are also a possibility, especially during step 3

where the artifact is sent to the RP/SP [18]. Since the protocol

does not “specify short-term freshness measures or the necessity

of channel-based security, a replay attack may be possible” [18].

There are also some unique instances where security analysis has

been done on a specific SAML based SSO solution. The study by

Armando et. al [18] examines Google’s SAML implementation

for Google Apps. The authors analyzed the formal SAML 2.0

protocol by using a state-of-the-art model checker for security

protocols (SATMC). With SATMC, the authors were able to

determine “that two protocol sessions sharing the same IdP are

sufficient for a malicious SP to mount this attack and gain access

to a resource of another SP under the identity of an unaware user”

[18]. The authors were able to reproduce the attack on the

production deployment environment of Google Applications. For

the experiment, ai-lab.it domain was registered at the Google’s

SAML SSO service and a corresponding public key for the IdP at

the domain was given to Google. Through a Java Servlet, a

dishonest SP called “BadSP” was simulated to construct SAML

authentication requests which are forwarded to the AI-Lab IdP for

authentication. Once a response is received, BadSP then

recomposes a fake response for Google, thus allowing it to

impersonate and successfully log into the Google Apps SP as the

original AI-Labs member. Since publication of the leak, the

authors have also reported the issue to Google who have promptly

updated and patched their Google Applications service to address

the vulnerability [18].

4. ALTERNATIVES

4.1 SIMPLE AUTHENTICATION FOR THE

WEB
The first alternative SSO for review is suggested by Vander Horst

and Seamons in “Simple Authentication for the Web” [20]. The

suggested novel SSO method is similar in concept to automated

email-based password reestablishment. Many current SSO

solutions already utilize an email as the unique identifier for the

user while their implementation adds an additional layer on top

for authentication purposes. The authors argue since many

RPs/SPs already utilize the email as a way to demonstrate

ownership of an email address and perform an email based

password recovery, “why not make email the primary means of

authentication and remove site-specific passwords” [20]. Their

suggested method of using email providers to authenticate users

on behalf of RPs and SPs “works because web sites trust email

providers to deliver messages to their intended recipients” [20].

This simplistic approach “removes the setup and management

costs of passwords at sites” and “provides SSO without a

specialized IdP” which thereby “thwarts all passive attacks” [20].

The authentication process in the suggested method is as follows

[20]:

1. User attempts to login to a SP/RP by providing

their email address.

2. The RP/SP generates a user token and an email

token. The user token is given to the user and the

email token is emailed to the user’s email address.

3. User checks his/her email for the email token and

once retrieved, sends it, along with the user token

back to the RP/SP for authentication.

Figure 4: Simple Authentication for the Web Process [20]

For the authentication to be successful, the tokens must both be

returned together to the RP/SP. This prevents eavesdroppers from

intercepting just one message and attempting to replay it. Also,

the tokens are single-use only removing further possibility of

replay attacks.

There are obstacles present with such an implementation as the

authors have noted. Latency issues with email delivery and lack of

email encryption are two notable concerns. Users must ensure

their email providers are sufficiently fast in message delivery,

otherwise their authentication process will be delayed. Also, email

providers should provide encryption of delivered messages to

ensure the implementation is not vulnerable to passive

eavesdropping and active modification. Also, for a user to

manually check their email account for the email token is

inconvenient and unnecessary. The authors suggested an

automated process of retrieving email tokens, through web

browser or email client extensions to improve usability of such a

system [20]. Also another downside is that using the SAW

method would not allow the user to pass additional assertions or

claims to the RP/SP as many of the current SSO solutions do.

Though the SAW method reduces password fatigue, registration

fatigue whereby users are required to enter many of the same

personal details across multiple RPs/SPs are still present.

The secondary authentication token is not limited to just email. As

many RPs/SPs currently use an alternative method such as text

messaging for password retrieval, the SAW method can be

extended to use text or instant messaging as an alternative. The

added benefit of this would be the lower latency associated with

instant messaging [20].

4.2 PRIVACY-AWARE IDENTITY

MANGEMENT
As mentioned earlier, one of the main issues with SSO is user

privacy. Ensuring user information and activities are not shared

amongst RPs or SPs is critical in the implementation of a secure

SSO system. Zaradioon et. al. present an identity management

protocol called Web2ID in “Privacy-aware Identity Management

for Client-side Mashup Applications” [21]. The proposed

protocol “describe a new relay framework in which

communication between two SPs is mediated by a relay agent”

which is shown to be privacy-preserving [21].

The proposed Web2ID “uses asymmetric cryptography to enable

users to prove ownership of their identity URL without relying on

any services by third parties” [21]. For the authentication, a user

presents her credentials to the relay agent which in turn acts on

behalf of the user and interacts with other RPs/SPs. The relay

agent, also referred to as an identity mashlet, allows the user to

perform authorization delegation and attribute exchange but only

when explicitly defined by the user. Furthermore, the agent is

designed so that an attribute requester can be anonymized, thus

preventing the attribute provider from learning the identity and

surfing habits of the user by knowing which other SPs the user

has membership to. The authors noted that previous

implementations using HTTP redirects to accomplish attribute

exchange reveals the user’s identity due to the need for the user to

send a callback URL to the SP which in turn discloses their

identity [21].

For identity establishment, a user first hosts their identity at an

URL which contains the identity mashlet. At initial setup, the

mashlet generates a public/private key pair with the public key

embedded in the mashlet. The private key is kept and stored safely

by the user. The following describes the authentication process for

Web2ID:

1. User provides a RP/SP with his/her identity mashlet

URL.

2. The RP/SP loads the identity at the supplied URL.

3. The RP/SP then locates the public key associated with

the identity mashlet.

4. RP/SP then generates a session token encrypted with the

user’s identity mashlet’s public key. Domain name is

also included in the token to prevent replay attacks by

adversaries.

5. RP/SP sends the encrypted token to the identity mashlet

to decrypt.

6. The identity mashlet then asks the user to authenticate

by providing the private key which then allows it to

decrypt the token. Domain name of the RP/SP is then

verified to the encrypted domain in the token.

7. Finally, the identity mashlet returns the session token

back to the RP/SP to notify it of successful

authentication.

Figure 5: Web2ID Authentication Process [21]

The authors also state that their implementation uses MAC

(Message Authentication Code) “to prove possession of session

token” [21]. The RP/SP only serves requests that contain the

correctly computed MAC value. An additional benefit of the

protocol is that it is completely stateless and does not require user

credentials to be transmitted over the network.

The implementation of the public key crypto allows the system to

be protected from MiTM and other snooping attacks [21]. Also,

considering that the domain name of the RP/SP is also embedded

in the authentication token, replay attacks are difficult to launch.

5. CONCLUSION
With the ever evolving state of web services and applications, the

need for a standardized SSO solution is more important than ever.

From the analysis presented in this paper, it is apparent that there

are still many issues which must be addressed before a web SSO

system becomes widely deployed and adopted by providers and

users.

Current SSO solutions are hampered by the use of existing

technologies and protocols on top of which their implementations

are built. However, due to the nature of the internet, SSOs must

use these methods to ensure maximum compatibility amongst the

various configurations of IdPs, RPs/SPs and users. The choice of

choosing state-of-the-art and secure methods versus older but

more compatible methods is a fine balancing act that all SSO

solutions must take into consideration.

Enforcing SSO specifications and best practices is also a huge

undertaking that is vital to the overall security of the network of

IdPs and RPs/SPs. As noted in the studies of OpenID and SAML,

specifications are not always followed by each and every IdP and

RP/SP in the network. This eventually leads to security flaws and

user privacy breaches that undermine the whole system. A system

where IdPs and RPs/SPs are regularly tested and vetted to ensure

proper implementation of the protocol specifications help

tremendously in reducing the security vulnerabilities of such

systems.

However, in its current state where many SSO solutions are vying

for market share, password fatigue and many of the other issues

SSO solutions are supposed to solve will still be present amongst

internet users. Also, protocol specifications are more lenient on

security implementations in order to obtain more widespread

adoption. Unfortunately, with the fragmented and distributed

model of the internet, it is doubtful there ever will be a single and

robust SSO solution. In the meantime, the best approach for

current SSO specification authors is to provide as much education

as possible to implementers of their specification as well as

continuously patch and improve upon their solution as new

vulnerabilities are discovered.

6. REFERENCES
[1] Hodges, J., Howlett J., Johansson L., Morgan, RL. 2008.

Towards Kerberizing Web Identity and Services. MIT

Kerberos Consortium

[2] D. Florencio and C. Herley. A large-scale study of web

password habits. In WWW '07: Proceedings of the 16th

International Conference on World Wide Web, pp 657{666,

New York, NY, USA, 2007. ACM.

[3] E. Sachs. Usability Research on Federated

Login.http://sites.google.com/site/oauthgoog/UXFedLogin,

October 2008.

[4] D. Mills. Identity in the Browser (Mozila Labs).

https://mozillalabs.com/blog/2009/05/identity-in-the-

browser/. 2010.

[5] A. Josang, M.A. Zomai, and S. Suriadi. Usability and privacy

in identity management architectures. In the Proceedings of

ACSW '07

[6] R. Dhamija and L. Dusseault. The seven flaws of identity

management: Usability and security challenges. IEEE

Security and Privacy, 6:24-29, 2008

[7] Suriadi, S., Foo, E., Jøsang, A. 2009. A user-centric

federated single sign-on system. Journal of Network and

Computer Applications 32.

[8] Heckle, R., Lutters, W. G., and Gurzick, D. 2008. Network

authentication using single sign-on:the challenge of aligning

mental models. In CHIMIT. ACM, Cambridge,

Massachusetts.

[9] E. Maler and D. Reed. The venn of identity: Options and

issues in federated identity management. IEEE Security and

Privacy.

[10] T. Mustafić, A. Messerman, S.A. Camtepe, A. Schmidt, and

S. Albayrak. 2011. Behavioral biometrics for persistent

single sign-on. In Proceedings of the 7th ACM workshop on

Digital identity management (DIM '11). ACM, New York,

NY, USA, 73-82.

[11] Feld, S., and Pohlmann, N. Security analysis of OpenID,

followed by a reference implementation of an nPA-based

OpenID provider. In Information Security Solutions Europe

(ISSE) conference (Madrid, Spain, 2008).

[12] Bellamy-McIntyre, J., Luterroth, C., Weber, G. OpenID and

the Enterprise: A Model-Based Analysis of Single Sign-On

Authentication. Enterprise Distributed Object Computing

Conference (EDOC). 2011 15th IEEE International. pp.129-

138, Aug. 29 2011-Sept. 2 2011

[13] H. Oh, S. Jin. The Security Limitations of SSO in OpenID.

Advanced Communication Technology. 2008. ICACT 2008.

10th International Conference, vol.3, pp.1608-1611, 17-20

Feb. 2008

[14] H. Lee, I. Jeun, K. Chun, J. Song. A New Anti-phishing

Method in OpenID. Emerging Security Information, Systems

and Technologies, 2008. SECURWARE '08. Second

International Conference. pp.243-247, 25-31 Aug. 2008

[15] Sun, S.-tsai, Hawkey, K., & Beznosov, K. (2010). OpenID

Enabled Browser : Towards Fixing the Broken Web Single

Sign-On Triangle. Computer Engineering, 49-58.

[16] S. M. Hansen, J. Skriver, and H. R. Nielson. Using static

analysis to validate the SAML single sign-on protocol. In

WITS '05: Proceedings of the 2005 workshop on Issues in

the theory of security, pages 27{40, New York, NY, USA,

2005. ACM Press.

[17] T. Groß. Security analysis of the SAML single signon

browser/artifact profile. In Proc. 19th Annual Computer

Security Applications Conference, 2003.

[18] A. Armando, R. Carbone, L. Compagna, J. Cuellar, and L. T.

Abad. Formal Analysis of SAML 2.0 Web Browser Single

Sign-On: Breaking the SAML-based Single Sign-On for

Google Apps. In 6th ACM Workshop on Formal Methods in

Security Engineering (FMSE’08), pages 1–10, Hilton

Alexandria Mark Center, Virginia, USA, 2008. ACM.

[19] W. Kaixing, Y. Xiaolin. A Model of Unite-Authentication

Single Sign-On Based on SAML Underlying Web.

Information and Computing Science, 2009. ICIC '09. Second

International Conference on , vol.2, pp.211-213, 21-22 May

2009

[20] T.W. van der Horst and K.E. Seamons. 2007. Simple

authentication for the web. In Proceedings of the 16th

international conference on World Wide Web (WWW '07).

ACM, New York, NY, USA, 1217-1218.

[21] S. Zarandioon, D. Yao, and V. Ganapathy. 2009. Privacy-

aware identity management for client-side mashup

applications. In Proceedings of the 5th ACM workshop on

Digital identity management (DIM '09). ACM, New York,

NY, USA, 21-30.

[22] D. P. Kormann and A. D. Rubin. 2000. Risks of the passport

single signon protocol. In Proceedings of the 9th international

World Wide Web conference on Computer networks : the

international journal of computer and telecommunications

netowrking. North-Holland Publishing Co., Amsterdam, The

Netherlands, The Netherlands, 51-58.

[23] P. McKiernan. 2002. Addressing Online Identity:

Understanding the Microsoft Passport Service. In

Information Security Technical Report, Vol 7, No. 3 (2002)

65-80.

[24] Rolf Oppliger. 2004. Microsoft .NET Passport and identity

management. Information Security Technical Report,

9(1):26-34.

[25] Rolf Oppliger. 2003. Microsoft .NET Passport: A Security

Analysis. Computer, Vol 36, No. 7 pp. 29-35.

[26] S. Olsen. 2001. Privacy terms revised for Microsoft Passport.

CNet News. http://news.cnet.com/Privacy-terms-revised-for-

Microsoft-Passport/2100-1023_3-255310.html.

[27] K. Regan. 2004. EBay Drops Passport in Blow to Microsoft.

eCommerce Times.

http://www.ecommercetimes.com/story/39325.html.

[28] B. McWilliams. 2001. Stealing MS Passport’s Wallet.

http://www.wired.com/science/discoveries/news/2001/11/48

105.

[29] M. Slemko. 2001. Microsoft Passport to Trouble.

http://www.znep.com/~marcs/passport/.

[30] Andreas Pashalidis and Chris J. Mitchell. 2003. A taxonomy

of single sign-on systems. In Proceedings of the 8th

Australasian conference on Information security and privacy

(ACISP'03), Rei Safavi-Naini and Jennifer Seberry (Eds.).

Springer-Verlag, Berlin, Heidelberg, 249-264.

[31] Kim-Kwang Raymond Choo. 2006. Issue report on business

adoption of Microsoft Passport. Information

Management & Computer Security, Vol. 14 Iss: 3 pp. 218 –

234.

[32] E. Duindam. 2007. Windows Live ID Security Breached.

http://www.exploring.nl/erik-duindam-us.pdf.

[33] J. Kirk. 2007. Microsoft Windows Live Flaw Opened Door

to Scammers. About.com Computing Center.

http://pcworld.about.net/od/instantmessaging1/Microsoft-

Windows-Live-Flaw-Op.htm.

[34] A. Tom. 2010. What yahoo wants from Ops. OpenID

Technology Summit West.

[35] Rachna Dhamija, J. D. Tygar, and Marti Hearst. 2006. Why

phishing works. In Proceedings of the SIGCHI conference on

Human Factors in computing systems (CHI ’06), ACM, New

York, NY, USA, 581-590.

[36] D. Recordon, M. Jones, J. Bufu, J. Daugherty, and N.

Sakimura. 2008. OpenID provider authentication policy

extension 1.0.

[37] D. Recordon and D. Reed. 2006. OpenID 2.0: a platform for

usercentric identity management. In Proceedings of the

Second ACM Workshop on Digital Identity management,

Alexandria, Virginia, USA, pp. 11–16.

[38] Drummond Reed, Les Chasen, and William Tan. 2008.

OpenID identity discovery with XRI and XRDS. In

Proceedings of the 7th symposium on Identity and trust on

the Internet (IDtrust '08). ACM, New York, NY, USA, 19-

25.

[39] R. Wang, S. Chen, X. Wang. 2012. Signing Me onto Your

Accounts through Facebook and Google: a Traffic-Guided

Security Study of Commercially Deployed Single-Sign-On

Web Services. In Proceedings of the IEEE Symposium on

Security and Privacy. Oakland.

[40] S. Cantor. 2005. Shibboleth Architecture Protocols and

Profiles. http://shibboleth.internet2.edu/docs/internet2-mace-

shibboleth-arch-protocols-200509.pdf.

