Anonycaster: Simple, Efficient Anonymous Group
Communication

Christopher C. D. Head
chead@cs.ubc.ca

ABSTRACT

The ability to communicate without revealing authorship of
messages has, in the past, often been considered by means
of two approaches. One approach has been for users to trust
a particular known entity or small number of entities not to
disclose their identities; this is the solution used in virtual
private networks or organizationally hosted communication
fora, for example. The other approach has been to rely on
probabilistic anonymity; this is the solution used by such
systems as The Onion Router (TOR), wherein the user does
not explicitly trust any of the nodes on the network but
assumes that anonymity can be achieved by routing mes-
sages through a large enough set of untrusted nodes that it
is improbable that all nodes have been compromised.

In this paper, I introduce a system that exists between these
two extremes. Rather than relying on a central authority
to protect anonymity, cryptographic primitives are used to
protect messages in transit such that the “network” (includ-
ing any relay server) need not be trusted. However, rather
than relying on a set of completely unknown-to-the-user re-
lay nodes, trust is distributed among the participants in the
conversation itself, who are far more likely to be known to
the user. Finally, anonymity in this system is determinis-
tic: the only information a compromised party can divulge
is whether a particular message was written by that party
or whether it was written by someone else in the group; no
matter how many parties are compromised, it is impossible
to differentiate authorship of messages between the remain-
ing benign parties.

1. INTRODUCTION

Today’s Internet is used by many people desiring a way
to communicate without being tracked or identified. From
human-rights activists to corporate whistle-blowers to police
tip submitters to callers of complaint lines, the availability
of anonymity is critical to those who fear for their safety or,
for any other reason, wish to publish material without their
names attached.

Existing systems that provide anonymity to users tend to
fall into one of two categories. The first category is systems
which trust a single, central server and rely on a secure con-
nection to that server. The second category is systems which
rely on a large network of untrusted relay nodes.

These approaches represent two ends of a spectrum: at one
end, a single entity is trusted absolutely; at the other end,
a massive number of entities are completely untrusted and
users of the system simply assume that an attacker cannot
compromise or replace the entire network.

Anonycaster takes an approach which lies in the middle of
this spectrum: trust is spread among multiple entities, but
those entities are the other parties to the conversation. By
spreading trust among multiple entities, Anonycaster elimi-
nates the single point of failure inherent to the centralized-
server model. I assume that the user likely has an existing
relationship with at least some of the other participants in
any given conversation; Anonycaster takes advantage of this
existing relationship to yield a more trustworthy anonymity
system than one that simply uses a network of relays whose
operators are unknown to the user.

2. RELATED WORK

A number of systems exist which implement some sort of
multi-user anonymous communication.

2.1 Centralized Server

One way to provide anonymity is to use a secure connection
mechanism, such as Transport Layer Security (TLS) or In-
ternet Protocol Security (IPSec), to hide the content of a
message being sent to a central server, then trust the server
to publish the message while discarding the user’s identity.
Unfortunately, this naive solution, while easy to understand
and implement, suffers from a number of drawbacks. First,
unless care is taken to randomly reorder or time-shift mes-
sages, this mechanism is vulnerable to traffic analysis: an
attacker who observes an encrypted connection being made
to the central server followed shortly by the appearance of
a new message may conclude that the message was sent by
the connection and may then take action against the traced
originator of the connection. Second, the central server rep-
resents a single node which must be trusted absolutely and,
thus, a single point of failure: an attacker need only compro-
mise the server in order to instantly reveal the authorship of
all messages; even if the server actually discards authorship
rather than simply displaying it, the attacker can reveal the

authorship of any new messages delivered after the compro-
mise. An example of this kind of system is Wikipedia [1]:
while all edits are logged and associated with a user, a visitor
who creates a named account has their IP address hidden
when they edit content and these hidden IP addresses are,
by policy, available only to a very limited set of trusted peo-
ple.

2.2 Tor

Dingledine et al. describe a protocol [7] for setting up a
network of relay stations which forward Transmission Con-
trol Protocol (TCP) connections anonymously. A sender
negotiates, hop by hop, a virtual circuit through a random
selection of nodes; connection control commands and pay-
load data are sent in fixed-length cells which are repeatedly
encrypted using keys shared with the relays on the path. As
the cell passes each relay, the relay uses the shared key to
decrypt the contents of the cell then passes the cell to the
next hop selected during virtual circuit setup. The last relay
in the route will decrypt the cell and obtain the plaintext
data to send to the target server.

Tor’s security relies on at least one of the relays in the chosen
route being trustworthy. The expected deployment model
of Tor is a very large network of relays, with each client
selecting a random subset of relays for a route. Statisti-
cally, the client expects that the probability of an arbitrary
relay being compromised in such a large network should be
quite small and, thus, the probability of an entire randomly-
selected route being compromised should be smaller yet.
Unfortunately, the generality implied by anonymizing ar-
bitrary TCP connections limits Tor’s ability to rely on the
presence of nodes whose operators are personally known to
participants in the conversation. In Tor, the expectation
is that the user does not personally know any of the relay
operators, which could leave the user open to an attacker
replacing the entire Tor network with a malicious “fake Tor
universe”. This would be especially problematic if the user
did not have access to a trusted network with which to boot-
strap knowledge of benign relays. Anonycaster, on the other
hand, solves this bootstrapping problem by placing trust in
exactly the parties participating in the conversation, who
I assume met each other in some other medium, perhaps
in person, and can exchange any necessary cryptographic
fingerprints at that time.

2.3 Anonymous Remailers

Many authors [4, 5, 6] have applied Tor-like techniques to the
specific problem of anonymous e-mail, typically by building
mail transport agents that decrypt, anonymize, and reroute
mail. These are essentially reimplementations of Tor at a
different protocol layer and, as such, suffer from the same
limitations.

2.4 Multi-party Off-the-Record Messaging

The Off-the-Record (OTR) protocol [2] provides a mecha-
nism by which two parties may communicate over an en-
crypted channel while enjoying perfect forward secrecy and
while also rendering it impossible for anyone, including a
participant, to prove whether or not a given message oc-
curred as part of the original conversation; it achieves this
property by revealing a key at the end of the conversation

that allows anyone in the world to forge messages. The
Multi-party OTR protocol [8] extends original OTR, to more
than two participants.

MPOTR, however, yields a different set of properties than
Anonycaster. MPOTR is sold as an Internet equivalent to
an in-person, face-to-face meeting: the set of participants
is known and mutually authenticated and the authorship of
every message is strongly proven during the conversation,
but messages are kept confidential to the group and both
authorship and membership can be plausibly denied once
the conversation is terminated. MPOTR is thus perfect for
situations in which deniability of evidence is the goal: in a
democratic country with a fair court system, MPOTR does
its job of reducing conclusive evidence of authorship to wit-
ness testimony of the same. This is not, however, the same
as the actual anonymity provided by Anonycaster. There are
many situations in which deniability is of little value com-
pared to actual anonymity. One such situation is a country
under a totalitarian regime which can arrest and imprison
dissenters without resorting to the due process expected in
democratic countries and without procuring actual evidence;
another is the far more informal case of a group, perhaps a
group of employees and their manager, raising anonymous
complaints or grievances without fear of being harassed for
“not being a team player” or “making trouble”. Both of
these situations are characterized by a potentially harassing
party who doesn’t need formal proof of authorship in order
to carry out the harassment; true anonymity, on the other
hand, prevents the harassing party from knowing whom to
target.

2.5 Dining Cryptographers Networks

The Dining Cryptographers Network (DC-Net) protocol, de-
scribed by Chaum [3] albeit not with that name, is a pro-
posed network protocol using simple cryptographic primi-
tives to establish an anonymous group communication with
almost exactly the same properties as those attributed to
Anonycaster. In fact, Anonycaster is based on Chaum’s
DC-Net theories but nails down implementation details and
improves bandwidth efficiency somewhat over Chaum’s pro-
posed protocol. Chaum'’s paper describes a general approach
that requires O (n2) messages to be sent over the network
for each round of protocol execution (where n is the number
of participants). Sardroud, Dousti, and Jalili reduce this
to O (n) by using a more complex protocol involving linear
equations [9]. Anonycaster achieves O (n) message transmis-
sions per round, just like Sardroud et al.’s work, but does
so using much simpler computations involving only existing
cryptographic primitives and exclusive-OR computations.

3. THREAT MODEL

In constructing Anonycaster, I assume there are N group
members attempting to converse. [take N =b+u+m+1,
where b is the number of benign conversation partners whose
cryptographic fingerprints the user has verified (either in
person or by checking with other parties), u is the number
of conversation partners whose fingerprints neither the user
nor any of the b benign nodes has verified (if the user were
to omit checking node z’s fingerprint, but a benign node
y whose fingerprint the user had checked were to check z’s
fingerprint, the user could simply ask y for x’s fingerprint;
thus, u is actually the nodes that lie outside the transitive

closure of fingerprint checking by benign nodes rooted at the
designated user), m is the number of conversation partners
who have been compromised by the attacker, and the re-
maining node is the user himself or herself (every node is a
user of the system, but I designate one user as “the user” for
clarity). I consider two classes of attacker.

The first class of attacker controls the network but does not
have the ability to control or replace any of the end nodes;
for this threat model, v = m = 0 and thus b = N — 1.
This class of attacker can perform a denial-of-service attack
against the group, but this attack can be reliably detected by
the group members and differentiated from a normal silent
channel. The attacker cannot perform any other attacks in
this scenario.

The second class of attacker controls both the network and
some number of nodes. Control over these nodes could be
obtained because the user has neglected to verify their fin-
gerprints; in this case, u # 0 and the attacker can replace
these nodes by redirecting network traffic. It could also be
because the nodes themselves have been compromised; in
this case, m # 0 and traffic redirection is unnecessary. An
attacker could also compromise different nodes using difer-
ent approaches. These cases are equivalent in terms of the
abilities of the attacker; the important observation is that
b < N — 1 and the remaining m +u = N — b — 1 nodes are
controlled by the attacker while being accepted as legitimate
by the user (and, presumably, the remaining b benign nodes;
consider the transitive-closure argument from earlier in this
section). In this environment, the attacker has four capa-
bilities. First, the attacker can perform a denial of service
attack; in this case, however, the denial of service attack is
undetectable as such and the attacker has the choice to mas-
querade the attack as either a completely silent channel in
which no nodes are attempting to transmit, or as a very busy
channel in which nodes are transmitting but messages are
being corrupted by collisions. Second, trivially, the attacker
may read messages sent to the group. Third, also trivially,
the attacker may inject messages into the group’s conversa-
tion. Finally, the attacker may, given a message sent by the
user, determine that the user belongs to the b 4+ 1 benign
group members and not to the m + u malicious group mem-
bers; however, the attacker is unable to reduce the size of
the set of possible authors below b+ 1.

4. IMPLEMENTATION

4.1 The Dining Cryptographers Protocol

Chaum’s Dining Cryptographers protocol [3] describes a pro-
tocol by which n participants may, between then, compute
the exclusive OR of a set of input bits, one input per par-
ticipant, without any participant learning the value of any
other participant’s input (assuming n > 2, obviously; if
n = 2, one’s own input and the exclusive-OR, output are suf-
ficient to calculate one’s partner’s input). This is achieved
by having every two participants generate a pairwise ran-
dom bit unknown to each other participant; each partic-
ipant exclusive-ORs all their observed random bits along
with their input bit and publishes the result. The party
then exclusive-ORs all the published bits; the random bits
serve to mask out the individual messages in the published
bits, but once all the published bits have been combined,
each random bit will appear exactly twice (once from each

person who observed it) and will thus cancel, leaving only
the exclusive-OR of the input bits.

4.2 Naive Group Communication

A naive extension of this protocol to the field of anonymous
group communication consists of treating the published bits
as an error-prone bitstream transmission medium and imple-
menting a reliable network protocol on top of that medium.
For example, one might transform a message into a sequence
of bits, begin transmitting the bits of the message in con-
secutive rounds of the DC protocol, and check for collisions
(instances where the transmitted and received bits differ); in
the case of a collision, one could stop transmitting, wait for
a random period of time, and try again. A simple implemen-
tation of this protocol, however, is very inefficient: if every
pair of nodes must communicate over the network in order
to flip a virtual coin, then for each round, all n nodes will
communicate with all n—1 other nodes, for a total of O (n?)
messages sent over the network; in a non-multicast-capable
network (such as the Internet), the publishing stage also re-
quires each of the n nodes to send its published combination
of bits to all n — 1 other nodes, another O (nz) operation.
This inefficiency is made worse by the fact that as the num-
ber of nodes increases, assuming all nodes are transmitting
regularly, the chance of collisions increases as well, mean-
ing the frequency of rounds must increase to compensate.
Anonycaster resolves this inefficiency by taking advantage
of simple cryptographic primitives to reduce the amount of
communication necessary to run the protocol.

4.3 Coin Flip Generation

The first stage of the round, the generation of pairwise-
shared random bits, is easy to solve, and Chaum hints at
a solution in the original DC paper [3]. Anonycaster solves
the pairwise-shared—random—bit—generation problem by es-
tablishing a symmetric pairwise key between each pair of
nodes (by means of Diffie-Hellman, ensuring neither node
alone may seriously influence the generated key); the nodes
run the AES cipher in counter mode in lockstep in order to
generate a random bitstream of arbitrary length. This re-
quires that the nodes exchange Diffie-Hellman keys during
system setup, but requires no communication at all while
the protocol is running.

4.4 Publishing

In the original version of the DC protocol, the publishing
stage is not considered in depth; it is assumed that the final
message (the exclusive OR of the inputs) is to be revealed
publicly and that each node broadcasts its published bit to
the other nodes. [3] In practice, these assumptions are gener-
ally not true: wide-area networks (particularly the Internet)
provide only unicast (or anycast, which is uninteresting to
this discussion) addressing, but not, for most Internet users,
multicast; also, in many cases, it may occur that the final
message should be kept private rather than revealed to the
world. Anonycaster solves both of these problems.

Replacing broadcasts in the original, publicly-revealed mes-
sage model is quite simple: each node can send its published
bit to a central server, which combines the bits and returns
the result, providing O (n) network traffic. Solving the pub-
lic revelation model is also quite simple: each node sends its

published value to other nodes encrypted, either separately
for each recipient using a pairwise key or identically for all
recipients using a key shared among the entire group; the re-
cipients then decrypt the published bits and combine them
to extract the final output.

Unfortunately, these solutions are not obviously compatible
with each other: the solution to the broadcast problem re-
quires that the central server have access to the published
bits in order to combine them, while the solution to the pub-
lic revelation model requires that nobody other than the
group members be able to decrypt the publish messages.
Anonycaster achieves both goals: a group-shared key is es-
tablished (by means of multi-party Diffie-Hellman) and is
used with AES in counter mode. Each node maintains its
own counter value (which will never overlap between nodes)
which it uses for encryption, and the counters run in lock-
step. Each node exclusive-ORs its published bit with one
bit of its keystream thus generated before publishing. The
server then exclusive-ORs these encrypted values together
and publishes the result, which is the exclusive OR of all the
published bits and all the keystream bits. Similarly to how
the DC protocol itself uses cancellation to remove exclusive-
ORed masking bits, each node reconstructs the keystreams
of all nodes (possible since they share a key and differ only
in counter values) and exclusive-ORs each keystream bit in
turn with the received value; each exclusive OR operation
removes one of the original masks, eventually leaving only
the exclusive OR of the published bits, i.e., the output of
the DC protocol.

4.5 Tamper Detection

In subsection 4.4, it is assumed that the server is trusted to
accurately perform the exclusive-OR of the encrypted pub-
lished bits. A server that fails to do this can tamper with
messages being communicated: although the server cannot
read the messages, it can invert arbitrary bits simply by in-
verting the corresponding bits in its replies to the nodes. To
prevent this, Anonycaster establishes a key that is shared
among the group (this key is separate from the cipher key
described in subsection 4.4); this key is used to attach a
MAC tag to each message before the message is injected
into the DC medium. Because the key is shared among
the entire group, this MAC does not reveal any informa-
tion about authorship of the message, but it does guarantee
that the message originated within the group. The MAC
tag also allows nodes to avoid displaying garbage messages
when collisions inevitably occur.

The fact that the medium is unreliable corrupt messages
are a normal occurrence, due to collisions, opens the door to
an undetectable denial-of-service attack by the server. The
server need only sprinkle random inversions on the channel
and no messages can be successfully delivered, but the nodes
will believe the failure to be caused by collisions, not a ma-
licious server. To close this hole, the nodes agree during
setup on a silence threshold defining a percentage of rounds
that must always produce an output of zero. The choice of
exactly which rounds will be silent is made by a lockstep
pseudorandom number generator shared between all nodes,
preventing the server from knowing which rounds to avoid
corrupting; because all clients exclude these rounds from
message transmission and always provide inputs of zero, a

nonzero output could only have been produced by a mali-
cious server.

4.6 Key Setup

The above implementation details describe a number of keys
that need to be established, for ciphers, MACs, and lock-
step pseudorandom number generators. These keys can be
divided into two categories: some keys are shared between
exactly two nodes (pairwise keys), and other keys are known
by all nodes in the group (group keys).

When joining a group, a node begins by publishing two
freshly-generated Diffie-Hellman public keys. The first of
these keys is used for establishing pairwise keys; these pub-
lic keys are each distributed to all nodes, who then per-
form n — 1 pairwise Diffie-Hellman agreements producing
a shared premaster secret with each other node. The sec-
ond set of Diffie-Hellman public keys is rotated through the
nodes by the server where the nodes perform a multi-party
Diffie-Hellman agreement, ending with all n nodes agreeing
on a group premaster secret that is known to nobody outside
the group.

These premaster secrets are then each used to derive a ci-
pher key, a MAC key, and pseudorandom number generator
key, and a verifier string, by concatenating the premaster
secret with a diversifier flag specific to the type of key and
passing the result through a hash function. Finally, to au-
thenticate its identity and participation, each client signs
the complete list of usernames and Diffie-Hellman pairwise
agreement keys along with the group verifier to attest that
the key setup protocol has completed successfully; the sig-
natures are distributed to all nodes for verification.

S. SECURITY

I here describe how the mechanisms used by Anonycaster
constrain an attacker to only those capabilities described by
the threat model in section 3. There are four basic attacks
an attacker might carry out against Anonycaster: denial of
service, deanonymization of authorship, reading of messages,
and injection of messages. Where appropriate, I divide anal-
ysis into two cases that parallel the cases in section 3: cases
where the attacker does not control any nodes (only the net-
work and/or server), and cases where the attacker controls
at least one participating node.

5.1 Group Premaster

If the attacker controls a node, it will obtain the group pre-
master as part of the setup phase. Assuming the attacker
does not control a node, I describe why it is infeasible for
the attacker to obtain the group premaster.

The group premaster is the output of the multi-party Diffie-
Hellman exchange; obtaining the group premaster thus re-
quires either compromising the Diffie-Hellman exchange al-
gorithm, disrupting execution of the algorithm to convince
one of the participants to reveal data it should not, or ob-
taining one of the Diffie-Hellman private keys. I assume that
the algorithm itself is secure, and thus compromising the
algorithm is infeasible as is recovering a private key from a
public key (or from a node, since no nodes are compromised).

One possible avenue of attack would be for the attacker to
attempt to recover the group premaster by disrupting the
order in which intermediate keys are delivered to nodes dur-
ing key setup. However, this is not possible. First, observe
that all nodes must end with the same group premaster:
any deviation from this requirement will be revealed when
the verifier (derived from the group premaster by a hash
function) is included in the signature comprising proof of
participation in the key setup protocol, and the hash and
signature algorithm used therein are assumed infeasible to
compromise (as are the ECDSA private keys used to gener-
ate the signatures, since no node is compromised). Second,
observe that, assuming node ¢’s Diffie-Hellman private and
public keys are x; and ¢g”* respectively, the group premaster
can only be gl'[?:1 %i: each node i constructs its copy of the
premaster by raising its last intermediate key to the power
x;, thus for all 4, x; must be a component of the premaster;
the attacker may introduce additional exponents into the fi-
nal product if he or she wishes but such additional exponents
must either all end up equal (in which case the attacker has
gained nothing, as the attacker must add those exponents
last in order to recover the shared secret but it will never
have the ability to carry out that calculation) or must end
up unequal (in which case the verification stage will fail);
and finally, it is not possible to include one or more of the
private keys more than once in the premaster because doing
so requires using up one of that node’s key-processing cy-
cles which must necessarily remove that node’s private key
from another intermediate key, resulting in unequal premas-
ters when the protocol finishes. Third, observe that, given
this definition of the premaster, a node can be convinced to
publish the premaster by passing it what should be its fi-
nal intermediate key earlier, but doing so will use up one of
the node’s key-processing cycles, again removing that node’s
private key from some other intermediate key which requires
it and resulting in unequal premasters.

The group premaster itself is only ever used as input to a
hash function in combination with a diversifier flag; thus,
recovering the group premaster from its outputs requires
compromising the hash function.

5.2 Pairwise Premaster

If the attacker controls one or more nodes, it will obtain
all pairwise premasters that relate to one of those nodes as
part of the setup phase. I describe why it is infeasible for
the attacker to obtain any pairwise premaster owned by two
nodes neither of which is compromised.

The pairwise premaster is the output of a Diffie-Hellman
exchange; obtaining the pairwise premaster thus requires
either compromising the Diffie-Hellman exchange algorithm,
disrupting execution of the algorithm, or obtaining one of
the Diffie-Hellman private keys. I assume that the algorithm
itself is secure, and thus compromising the algorithm itself
is infeasible as is recovering a private key from a public key
(or from a node, since neither of the two involved nodes is
compromised).

It is not possible for the attacker to disrupt the execution
of the algorithm. Just two messages are sent over the net-
work during pairwise key negotiation: each node sends its
Diffie-Hellman public key to the other node. Should the at-

tacker modify one or both of these keys, the modification will
be detected because the keys are included in the signature
comprising proof of participation. One of the signatures
on this proof must come from the other node involved in
the pairwise agreement; since that node is uncompromised,
the attacker cannot forge is signature as he or she lacks the
ECDSA private key.

5.3 Key Derivation

The keys used for the main protocol, as well as the group
verifier used in the proof of participation, are derived from
the relevant premasters by concatenating a diversifier flag
(identifying the purpose of the derived key) and applying
a hash function. An attack on the generation of these de-
rived keys thus requires either compromising the hash func-
tion (assumed infeasible) or obtaining the input to the hash
function (the premaster, which, as described in the prior two
subsections, is infeasible for an attacker who has not com-
promised a node that would have legitimate access to said
premaster).

5.4 Key Usage

The cipher and PRNG keys are used to key the AES block
cipher algorithm running in counter mode to produce a pseu-
dorandom bitstream. Any attack which allows the key or ad-
ditional keystream to be revealed would constitute a known-
plaintext attack on AES (since the “plaintext” is a lock-
step counter which the attacker is assumed to know). Fur-
thermore, for the encryption keys, care is taken that each
counter value for a given key is only used once, preventing
an attacker from using already-observed keystream to reveal
other plaintext.

The MAC keys are used to key the HMAC-SHA512 algo-
rithm. It is assumed that this algorithm does not permit
recovery of the key from a set of its inputs and outputs.

5.5 Message Injection

Message injection is trivial if the attacker controls a node; all
nodes in the group have the ability to send messages, so the
attacker simply sends the message through the compromised
node.

If the attacker controls only the network, he or she clearly
has the physical capability to modify messages; the question,
then, is whether messages can be injected undetectably. The
protocol defends against message injection by attaching a
MAC tag to each message, where the MAC is keyed by the
group MAC key. The attacker can thus inject a message by
forging a proper MAC tag, which requires either compromis-
ing the MAC or obtaining the group MAC key. As shown
in the preceding sections, this is infeasible.

5.6 Denial of Service

The attacker can trivially cause denial of service because
the attacker is assumed to control the network. The ques-
tion is whether the attacker can cause denial of service that
masquerades as normal activity.

If the attacker controls only the network and no nodes, this
is impossible. Corrupting the protocol framework itself will
obviously be detected. The only place where corruption is

expected by participating nodes is in the placing of mes-
sages onto the DC medium; here, corruption is expected
because collisions can occur. The server could conceivably
corrupt the medium to prevent messages from flowing; how-
ever, this will be detected as soon as the server corrupts a
silent round. The choice of which round is silent is made by
a lockstep PRNG keyed by the group PRNG key; for the
server to compute the output of this PRNG would require
it to compromise AES or obtain the group PRNG key, both
of which are infeasible. Thus, the denial of service attempt
will be detected with high probability by the nodes.

5.7 Message Revelation

Message revelation is trivial if the attacker controls a node;
all nodes in the group have the ability to read messages, so
the attacker simply extracts the message from the compro-
mised node. I therefore assume the attacker only controls
the network.

During normal operation, the attacker observes two kinds
of messages flowing over the network: each node’s masked
and encrypted inputs, and the encrypted output (which the
server generates). Ignoring the masking entirely, each node’s
inputs are encrypted with AES in counter mode using a
unique substring of the keystream that is never used for any
other message. Thus, removing the encryption and revealing
the masked input requires computing this keystream, some-
thing which is infeasible because the server does not possess
the group cipher key. The encrypted output is derived from
the encrypted and masked inputs by a simple exclusive-OR
and hence provides the attacker with no further informa-
tion beyond what they could obtain from the encrypted and
masked inputs alone.

5.8 Deanonymization

An attacker who controls a subset of the nodes is obvi-
ously able to determine whether or not a message came from
within that subset. The interesting deanonymization ques-
tion is whether such an attacker can differentiate between
uncompromised nodes with respect to message authorship.
Because the attacker may be a member of the group, the
encryption of masked inputs is irrelevant; security against
deanonymization is provided entirely by the mask. Further-
more, the attacker can clearly remove the masks generated
by the pairwise PRNGs belonging to a compromised node;
thus, in the following analysis, I consider the nodes’ selected
inputs masked only by those PRNGs that are shared be-
tween two uncompromised nodes.

First, the mask bits cannot be computed by the attacker.
The mask bits are generated by AES in counter mode us-
ing a key shared only by the two involved nodes and are
never reused except between those two nodes; thus, obtain-
ing the mask bits would require either obtaining the key or
else predicting the output of AES for an unknown key, both
of which are infeasible.

Given a set of values published by uncompromised nodes,
with each value being masked by the outputs of the pair-
wise PRNGs shared between the publishing node and all
other uncompromised nodes, it is infeasible for the attacker
to determine which of the uncompromised nodes published
a particular value. The original message value is either zero

or one. After applying the first pairwise PRNG, since the
PRNG is assumed to output unbiased independent bits, the
masked value has exactly equal probability of being the same
as, or different from, the original message value; further-
more, the only nodes who can uncover the original message
value are the publishing node and the other node in the
pair. After applying the second PRNG, the same argument
applies except that the “original message” in this case is ac-
tually the masked message from the first PRNG application;
the PRNGs are independent, and the message can only be
revealed by removing both masks, which requires cooper-
ation from either the publishing node or else both paired
nodes. Once all the masks have been applied, the original
message can only be revealed by cooperation from all paired
nodes.

6. CONCLUSION

Anonycaster sits at a point in a space of communication
mechanisms, from cryptographic to trusted-authority, from
anonymous to probabilistically anonymous to pseudonymous
to identified, from private to group-readable to publicly read-
able. Anonycaster provides group-readable communication,
full anonymity of message authorship, and authenticated
group membership, based on cryptographic primitives with
no trusted central authority. Anonycaster builds on existing
work by optimizing communication overhead for the existing
protocols while not compromising on anonymity. Anony-
caster provides the kind of deterministic guarantees of secu-
rity that many solutions in this space do not, and the point
at which it sits is ideal for a number of applications, from
such simple examples as “complaints box-style” anonymous
feedback to such serious matters as corporate whistleblowing
or human rights activism.

7. REFERENCES

[1] Wikipedia:CheckUser. https:
//en.wikipedia.org/wiki/Wikipedia:Checkuser.

[2] N. Borisov, I. Goldberg, and E. Brewer. Off-the-record
communication, or, why not to use PGP. In Proceedings
of the 2004 ACM workshop on Privacy in the electronic
society, WPES ’04, pages 77-84, New York, NY, USA,
2004. ACM.

[3] D. Chaum. The dining cryptographers problem:
Unconditional sender and recipient untraceability.
Journal of Cryptology, 1:65-75, 1988.
10.1007/BF00206326.

[4] D. L. Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Commun. ACM,
24(2):84-90, Feb. 1981.

[5] L. Cottrell. Mixmaster & remailer attacks. http:
//web.archive.org/web/20040209042623/http://
obscura.com/~1loki/remailer/remailer-essay.html.

[6] G. Danezis, R. Dingledine, and N. Mathewson.
Mixminion: Design of a type III anonymous remailer
protocol. In Security and Privacy, 2003. Proceedings.
2003 Symposium on, pages 2—15, may 2003.

[7] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The second-generation onion router. In Proceedings of
the 13th conference on USENIX Security Symposium -
Volume 18, SSYM’04, pages 2121, Berkeley, CA, USA,
2004. USENIX Association.

[8] I. Goldberg, B. Ustaoglu, M. D. Van Gundy, and

https://en.wikipedia.org/wiki/Wikipedia:Checkuser
https://en.wikipedia.org/wiki/Wikipedia:Checkuser
http://web.archive.org/web/20040209042623/http://obscura.com/~loki/remailer/remailer-essay.html
http://web.archive.org/web/20040209042623/http://obscura.com/~loki/remailer/remailer-essay.html
http://web.archive.org/web/20040209042623/http://obscura.com/~loki/remailer/remailer-essay.html

[9]

H. Chen. Multi-party off-the-record messaging. In
Proceedings of the 16th ACM conference on Computer
and communications security, CCS 09, pages 358-368,
New York, NY, USA, 2009. ACM.

A. A. Sardroud, M. S. Dousti, and R. Jalili. An efficient
DC-net based anonymous message transmission
protocol. In Proceedings of the 6th International 1SC
Conference on Information Security and Cryptology,
ISCISC ’09, 2009.

	Introduction
	Related Work
	Centralized Server
	Tor
	Anonymous Remailers
	Multi-party Off-the-Record Messaging
	Dining Cryptographers Networks

	Threat Model
	Implementation
	The Dining Cryptographers Protocol
	Naïve Group Communication
	Coin Flip Generation
	Publishing
	Tamper Detection
	Key Setup

	Security
	Group Premaster
	Pairwise Premaster
	Key Derivation
	Key Usage
	Message Injection
	Denial of Service
	Message Revelation
	Deanonymization

	Conclusion
	References

