
EECE 412 Term Project Report

1

Abstract— An implementation of a “user-proof” chat

application is explored. The central idea is taking the best
features in existing chat applications in order to demonstrate an
application that is resilient to security breaches caused by misuse.

I. INTRODUCTION

The market has shown to have accepted encrypted chat
applications. The popular application WhatsApp has an
estimated user base of over 1 million users, with the company
reporting that in “one single day, over one billion messages
were sent over WhatsApp” [9]. “Disposable” communication
functionality has been shown to be popular with Snapchat
sending approximately 400 million messages a day [2]. Many
of the popular messaging application have security issues [9],
but only one easily protects against a malicious user who has
access to the device. Snapchat’s chat functionality works in a
disposable manner. Disposable messaging refers to messaging
that does not store information about the conversation after the
conversation has finished. This stop a malicious user from
reading past messages even if they have access to the device
on which the messages were sent and received. Currently,
there are no chatting applications that combine solid security
(end-to-end encryption), disposable messages, and ease-of-
use.

Estimates have stated that by 2018 “IM apps will account for
75% of mobile traffic” [10]. The desire to have group chatting
functionality is demonstrated by the popularity of applications
such as WhatsApp, Apple’s IMessage, Facebook Chat, Slack,
and many more. These chatting applications can provide
resilient defences against a wide range of attacks taking place
over the network, but do not provide the strongest possible
security against other types of undesired access. There have
been reported cases of owners of electronic devices being
arrested for refusal to provide access to their device [3]. This
unauthorized access can be as simple as a curious friend
borrowing a non-security conscious user’s computer. The user
in these situations would have much better peace of mind
knowing that it is impossible to recover messages they have
sent while not requiring extra user action.

Our solution provides multiple users the ability to chat
securely between all users while preventing the storage of chat
history, providing anonymity, and granting access to only
those invited. The system is a web application that allows any
user to initiate a chat. The system returns a one time use URL
that can be given to another user to initiate the chat. The two
clients establish a shared key, communicating through the
server using https. The users are then able to chat using their
shared key for end to end encryption. At any point, any user
may request to add another user. The server provides another
unique, one time use URL that can be used to join the chat. At
this point, a new shared key is generated by the users, and the
chat continues with the new user. Upon leaving the chat, a
user is not able to rejoin the chat without a new URL being
requested by a user currently in the chat. After all users leave
the chat or the lifespan of the chat expires, no chat data is
stored and the conversation is discarded.

We have combined the desirable elements found in popular
messaging applications to provide a secure and easy to use
application. We have taken the group messaging functionality
of WhatsApp, iMessage, and others, the disposable messaging
in snapchat, and the ease of use of Cyph. This results in an
application that is user-friendly, minimizing the required user
actions to remain secure.

Our evaluation methodology is split into two parts, security
and usability. For the security evaluation we employ various
attack vectors to gain access to the information within secure
chat. We look at decrypting messages, man in the middle
attacks to listen in, as well as cross site scripting to gain
access. For usability, we look at whether or not our system can
actually be adopted by the public. For this, we use user testing
among a wide demographic.

After our evaluation, we found that certain aspects of our
app were secure, while others were not. Cross-site-scripting
and the re-use of chat URLs are prevented, but sharing URL
invites unsecurely leaves our app vulnerable to a man-in-the-
middle attack. In terms of usability, we discovered that sharing
invite URLs via Facebook Messenger prevented users from
successfully accessing a chat.

As a result of our evaluation, we believe that future
iterations should include a method to verify the identity of an
invited chat user, in order to prevent man-in-the-middle
attacks. We would also change the invite process so that a

Design of Burnchat
 December 11, 2016

G. Shaw – 38762118, T. Graham – 33756123,
M. Adria – 39636113, W. Qiu -42701136

Department of Electrical and Computer Engineering
University of British Columbia

Vancouver, Canada

geoffshawbc@gmail.com, qiu@alumni.ubc.ca, tlgraham@glide.com, michaeladria@me.com

EECE 412 Term Project Report

2

code is sent instead of a URL. This code would then be
entered into a standard invite page.

Secure and private communication has always been
important to humanity. Today, chat apps and chat services are
a vital part of communication. Due to malicious actors,
including powerful government agencies such as the NSA,
there are many threats to private conversations. In the 20th
century, it no longer became feasible for humans to encrypt
messages by hand, due to the ease with which computers
could break the ciphertext. Therefore, it is beneficial to society
to have a service to provide secure communication without
any effort from the user.

II. RELATED WORK

Our design combines elements from several different
existing works. The defining feature of our app, ephemerality,
is inspired by Snapchat, as well as other online anonymous
chatting services, like Cyph. Our task is to replicate this
feature while ensuring that messages and conversations are
irretrievable after the chat is ended, or a certain period of
inactivity.

We will be using end-to-end encryption to maintain
conversation confidentiality. Many services offer this security,
notably iMessage, WhatsApp, and Cyph. Our method for
encryption will be elliptic curve cryptography. Like many chat
services, we want to offer group chat functionality, ie, having
more than two people chatting together. We will need to
implement a protocol to to create and share multiple keys as
users are added to the chat group.

In many ways, the closest related work is Cyph: a user
opens a room, is given a link to share (which expires in 10
minutes), both parties exchange keys, and then they can send
encrypted messages. They use the Castle messaging protocol
[4], which is as follows:
1) Asymmetric keys are exchanged under a layer of

authenticated symmetric encryption.
2) For the cipher, Castle uses Poly1305-authenticated [5]

Curve25519 [6] (Diffie-Hellman) with XSalsa20 [7]
(stream cipher), plus an additional layer of Poly1305-
authenticated NTRU-EES439EP1 [8] (asymmetric cipher)
with XSalsa20.

3) This gives the cipher 256 bits of security, and gives Castle
a good balance of efficiency and security: NTRU is a
probably-quantum-safe cipher, with 20 years of research on
it. [13]
Our challenge is to create a service with equivalent security,

with the added feature of group chat.

III. ADVERSARY MODEL

The objective of the adversary in our system is to obtain
information that is shared in the chat. As this chat is designed
to handle sensitive information, an attacker may infer that any
given information transferred via our system has a high
likelihood of being valuable. Access to the information could

be though either decrypting ciphertext or gaining unauthorized
access to a chat.

The initial capabilities of an adversary are access to the
source code of the system, access to a standard user’s
capabilities on the system, and equipment capable of acting as
a man in the middle. Access to the source code is available to
the public due to Kerckhoffs’s principle.

During an attack, the assumption is that an adversary has
complete access to the network to intercept, modify, and
forward messages. The adversary may also send any request to
the server. This means an adversary has the ability to replicate
any message that was sent by an authenticated user to the
server. Further, the adversary can imitate a server to perform a
man in the middle attack. The adversary also has access to a
user’s computer after the chat has ended.

IV. SYSTEM DESIGN

The key to providing client side encryption in a group
chatting application is providing a symmetric key to all parties
involved. The main feature we have implemented is an
extension of Diffie-Hellman to allow for the dynamic
extension of a symmetric key across a group of users, more
specifically GDH.2. Reference [11] has shown that the shared
symmetric key does not need to be re-calculated every time a
new user enters the group, thus allowing for a less
computationally expensive process to extend the secret to new
users.

The initial shared secret will accessed through a link that the
new user entering the group uses. The existing group member
who shared this link keeps track of its state, and once the
secret has been used once, it will refuse access with the same
secret subsequent times. User will be encouraged to share this
across a secure channel. To reduce the risk of an adversary
brute forcing the secret from the time the secret was created,
to the time the secret is used, the distributed link will only be
available to be used for a short period of time before it expires.

We are using the Stanford Javascript Crypto Library, or
SJCL. This library is light, secure, and optimized to be used in
the browser [12]. The library also addresses the fact that native
javascript’s Math.Random() function is far from being
adequate for cryptographic uses, and have implemented a
pseudorandom number generator which “prevents an
adversary who compromises the generator from recovering
previously-generated data” [12].

Lastly to ensure that having the server be compromised does
not allow for past messages to be leaked, we are not storing
any data on the server. All messages are sent to the client by
the server, but not logged anywhere, or stored in a database.
The received messages exist as elements appended to the
clients DOM, so that when the chatting window is closed, the
past messages are gone.

The extension of Diffie-Hellman outlined [11] gives a
computationally light way to extend the key to new users, and
does not suffer from compromises when a user leaves the
chatting session.

EECE 412 Term Project Report

3

Although we are using an HTTPS connection to
communicate between the server and client, we feel that
providing client side encryption provides an extra layer of
security to the messages being sent. This ensure that any
malicious person with access to the server cannot just look
directly at the messages being sent, and instead would have to
decrypt them in order to read the messages.

We are passing the initial shared secret through the link as it
provides an easy to use way to get an initial secret for the
users, and doing this over an HTTPS connection will keep the
secret save. We are limiting the URL to only be used once so
that an attacker who finds the URL will be unable to join the
chat room. This is an issue with the standard password
authentication commonly used in chatrooms.

The lack of logs and stored information on the server
prevents a malicious user who has access the the server from
accessing the messages sent. In addition this prevents sql
injection attacks, as there is no database to access.

Principles of fail-safe defaults, open design, psychological
acceptability, and economy of mechanism are employed by
our design. When a URL link is been accessed for the second
time, a user is rejected to enter the chat room as default, even
if the user if genuine. This is an example of fail-safe defaults
in our design. The source code of our design is open source
and available to the public, following the open design
principle, because the security of our system does not reply on
the secrecy of our design. Our design also follows the
principle of psychological acceptability by using urls as a key
to access to chat room, which does not place additional burden
to the end users while providing them the security features. In
addition, the principle of economy of mechanism is adopted
where we keep the structure of our design at minimal by using
simple and effective key-exchange protocol and storing as
little information on the server as possible.

V. SYSTEM PROTOTYPE

The web application is hosted online for the most realistic
testing environment. The backend used Node.js. The
application is deployed on the platform as a service, Heroku.
The SSL certificate is provided by Heroku. The prototype is
desktop based and built for modern web browsers. The
implementation can be found at [14].

VI. SYSTEM EVALUATION

A. EVALUATION METHODOLOGY
Our evaluation strategy is inspired by and generally follows

OWASP Testing Guide 4.0. Specifically, our testing begins
with attempting to retrieve information from a conversation
we are not apart of. We set up a proxy between the client and
server of an ongoing chat to intercept messages. From here,
we see if it possible to decrypt the messages or, during key
establishment, determine what the shared key is. We also
attempt a man in the middle attack to convince a user they are
in a secure chat, while a third person listens in. We try to alter
the javascript that a user receives to display a different URL
for a different chat where messages are relayed. We also try to

alter the key sharing algorithm to provide a known key to the
adversary. We then attempt to use cross site scripting to inject
javascript code that sends user information and messages to an
adversary. The third attack vector we try is via the URL. First,
we attempt to use the URL to grant more than one user access.
Second, we attempt to brute force the URL to gain access to
an ongoing chat.

We also ensure that users will want to use our web
application. Upon deployment, we use user testing to ensure
ease of use and provide an outsider’s perspective. We gain a
wide perspective by getting testers of different age, education,
and technologic backgrounds.

The source code is hosted on Github to allow future
inspection and ongoing development as new security
requirements arise.

B. Results of the evaluation
A man-in-the-middle attack is successful if the method of

sharing the chat invite is compromised. If a third party can
open a chat with the initial invite, prevent that invite from
reaching the proper person, then open a new chat and inviting
that person, the third person will successfully gain access to
the chat.

Cross-site-scripting is prevented by escaping characters
necessary for scripting.

We verified that each unique chat URL (both the initial
user’s URL and any invite URL) can only be used once.

The results of the usability study showed that the simple user
interface was adequate while also demonstrating issues in
URL sharing. When a user was sent the link and instructed to
start a chat, all subjects intuitively began a chat, entered their
name, and received a URL to invite someone. All users were
able to send the URL, with the exception of one who did not
know what a URL was. When it came to using the shared
URL, users complained that selecting the URL by dragging
the cursor would close the URL popup if the mouse was
released outside of the popup. When users used email to send
the URL code, they were able to chat without issue. However,
if the link is sent via facebook, most of the time, the system
would think that the URL has already been used.

C. Discussion of the evaluation results
The possibility of a man-in-the-middle attack suggests our

design needs a method of authenticating whoever receives the
invite URL. Further designs could include a verification
system based on Google Authenticator or similar
authentication application.

The user testing of the system showed much room for
improvement. The three issues that became apparent are:
unclear on how to share a URL, issues on selecting the URL,
and inability to share via Facebook. The issue from Facebook
comes from how URLs are sent in Facebook messenger.
When a user sends a link, Facebook will access the URL to
find information regarding the link to display to the recipient.
In the case of Burnchat, this will invalidate the URL. The
solution to this is to use a code instead of URL that can be

EECE 412 Term Project Report

4

entered in a “Join Chat” option from the home page. This code
would also clarify on how to share a chat. Lastly, the copying
issue could be fixed by not having the box disappear when
clicking outside the box.

VII. DISCUSSION

The discussion of Burnchat’s viability as a useful system
begins with an overview of the positives and negatives:

Pros:

● Disposable
● Support for multiple participant in a chat
● Secure
● Provides anonymity
● Lightweight and efficient algorithm

Cons:

● Require secure methods of sharing urls
● No direct/automatic methods of authenticating other chat

participant if url is compromised
● Lack of support for transferring images and videos
● Can do some user-based evaluation to further improve

The testing and evaluation process of our implementation of

Burnchat reveals that it successfully meets the goals we
planned at the beginning of the development cycle. However,
there still exists several areas of possible improvement.

Burnchat has been proven to be a functional web application
that facilitates online communication while maintaining
security and disposability. Also, unlike Cyph, its support for
multiple participants in a chat room makes it more suitable for
a group of users. Furthermore, the option of anonymity widens
possible use cases. Its choice of algorithm does not only offer
security but also allow the client-side application to be fast
and lightweight. Lightweight applications generally yield a
faster rendering speed on end devices.

While the features mentioned above helps Burnchatt to
differentiate itself from other chat applications and offer a
unique experience to users, there are usability issues that could
be improved upon. Firstly, distributing URLs securely can be
a cumbersome job for users who value accessibility to the chat
room more than its security aspects. Currently, users are
responsible for sending the URL generated by Burnchat via
some pre-existing secure communication platform, such as
Facebook Messenger and Skype. It is questionable whether a
user would be willing to compromise familiarity and switch to
Burnchat for its extra security. Also, it is worth-noting that the
security of the system is, to some extent, relying on the
privacy of the URL. There is no built-in mechanism for the
chat participants to authenticate an invitee, who newly entered
the chat room, without using other secure communication
methods to ask directly if the intended invitee is in the chat
room or not. For example, when Alice sends a Burnchat
invitation URL to Bob via Facebook, and Trudy, who has
access to Bob’s Facebook account, then the privacy of the chat
room is compromised. Although Burnchat’s policy of only

allowing a URL to be used once will allow Bob to quickly
detect the existence of Trudy’s intrusion, people in the chat
room have no way of identifying Trudy’s attack without being
informed by Bob directly.

Secondly, although the initial aim of Burnchat is to provide
users a lightweight communication platform with minimal
functionalities, the fact that it only allows messages in text to
be transmitted may not always satisfy user needs. Support for
multimedia messaging would almost certainly make Burnchat
a better platform for group collaboration.

Here is a summary of improvements to make moving
forward:
● Force https
● Improve client-server authentication
● Improve the generation of random number
● Use codes instead of URL for chat invites
● Extend messaging capabilities to multimedia

VIII. CONCLUSION

Our design and implementation of Burnchat provides users
with a functional chatting platform. Similar to many instant-
messaging applications that currently exist on the market,
Burnchat secures user communications with crypto systems
that are publicly published and examined. Furthermore, it
successfully differentiates itself from others by supporting
disposable group chat. As an entirety, Burnchat is an
application that is able to stand its own and effectively
provides users with liable and unique functionalities.

Further development of the system could result in adoption
by security minded users. Increasing usability will make the
system more intuitive and create awareness of the systems
features. Further, building on the system's security and
bringing in outside analysis will boost confidence in the
application.

REFERENCES
[1] Play.google.com, 2016. [Online]. Available:
https://play.google.com/store/apps/details?id=org.thoughtcrime.secures
ms&hl=en. [Accessed: 12- Oct- 2016].
[2] J. Crook, "Snapchat Sees More Daily Photos Than Facebook",
TechCrunch, 2016. [Online]. Available:
https://techcrunch.com/2013/11/19/snapchat-reportedly-sees-more-daily-
photos-than-facebook/. [Accessed: 12- Oct- 2016].
[3] C. Matyszczyk, "Man arrested for refusing to give phone passcode to
border agents", CNET, 2016. [Online]. Available:
https://www.cnet.com/news/man-charged-for-refusing-to-give-up-
phone-passcode-to-canadian-border-agents/. [Accessed: 10- Nov- 2016].
[4] "Castle messaging protocol v1", Google Docs, 2016. [Online].
Available:
https://docs.google.com/document/d/1XVh4ALXhbfxi70QSUY-
xHclauob8O635bSySy6f1Ysk/edit?pref=2&pli=1. [Accessed: 10- Nov-
2016].
[5] D. J. Bernstein, “A state-of-the-art message-authentication code”,
cr.yp.to, 2005. [Online]. Available: http://cr.yp.to/mac.html. [Accessed:
10- Nov- 2016].
[6] D. J. Bernstein, “A state-of-the-art Diffie-Hellman function”,
cr.yp.to, 2005. [Online]. Available: https://cr.yp.to/ecdh.html.
[Accessed: 10- Nov- 2016].

EECE 412 Term Project Report

5

[7] “XSalsa20”, Sodium crypto library, 2016. [Online]. Available:
https://download.libsodium.org/doc/advanced/xsalsa20.html. [Accessed:
10- Nov- 2016].
[8] “ntru-crypto”, GitHub, 2016. [Online]. Available:
https://github.com/NTRUOpenSourceProject/ntru-crypto. [Accessed:
10- Nov- 2016].
[9] R. Mueller, S. Schrittwieser, P. Fruehwirt, P. Kieseberg and E.
Weippl, "Security and privacy of smartphone messaging applications",
International Journal of Pervasive Computing and Communications,
vol. 11, no. 2, pp. 132-150, 2015.
[10] L. Piwek and A. Joinson, "“What do they snapchat about?”
Patterns of use in time-limited instant messaging service", Computers in
Human Behavior, vol. 54, pp. 358-367, 2016.

[11] G. Ateniese, M. Steiner and G. Tsudik, "New multiparty
authentication services and key agreement protocols", IEEE Journal on
Selected Areas in Communications, vol. 18, no. 4, pp. 628-639, 2000.
[12] E. Stark, M. Hamburg and D. Boneh, "Symmetric Cryptography
in Javascript", 2009 Annual Computer Security Applications
Conference, 2009.
[13] N. Wolchover, “A Tricky Path to Quantum-Safe Encryption”,
Quanta Magazine, 2015. [Online]. Available:
https://www.quantamagazine.org/20150908-quantum-safe-encryption/.
[Accessed: 10- Nov- 2016].
[14] “Burnchat”, 2016. [Online]. Available:
https://burnchat.herokuapp.com/. [Accessed: 11-Dec-2016].

