
1 

Security Assessment of Coastline Market Web 
Application 

 
December 10, 2016 

 
Abrar Musa, Matas Empakeris, Vincent Chan, Yves Chan 

 
Team 7 

 
Department of Electrical and Computer Engineering 

University of British Columbia 
Vancouver, Canada 

abrar.musa.89@gmail.com (48915086), matas@alumni.ubc.ca (11112142), v.chan36@gmail.com (15327117), 
chanyves@gmail.com (74546094) 

 
 

Abstract​ - This report intends to give a description of          
Coastline Market and analyze the security of the        
company’s web application. Our group performed      
penetration testing using a variety of popular attacks        
found in today’s security breaches: the directory traversal        
attack, a password dictionary attack, Man-in-the-Middle      
attack, parameter tampering, NoSQL injection and      
cross-site scripting. Our results varied, but ultimately       
produced compromised user accounts and unexpected      
effects from parameter tampering and payload      
modification through a Man-in-the-Middle attack. The      
vulnerabilities found from our analysis included      
unauthenticated API endpoints, weak password     
restrictions and missing parameter verification in forms.       
Concluding our analysis, we encourage Coastline Market       
to implement stricter login and password policies, utilize        
the HTTPS protocol, and move input validation to the         
server side. 

I. INTRODUCTION 

Coastline Market is a service that “connect[s] restaurants        
and chefs with the most traceable, local and fresh seafood,          
direct from the source.” [1] The company acts as a middleman           
between buyers and fishermen who are looking to sell their          
catch. Users of the service are given access to a dashboard           
where they can view their financial analytics, orders, supply         
chain, customers, and inventory.  

As the internet continues to grow, so does the number of           
web applications. According to McAfee, research indicates       
that the number of attacks on internet-connected devices and         
programs continues to grow [2]. Like all web applications,         
Coastline Market is susceptible to threats and contains several         
vulnerabilities which we have analyzed in this report. For this          

reason, we made it our intent to find and report these possible            
exploits to the company, with the goal of helping protect their           
customers and financial assets. 

Coastline Market’s web application uses the MEAN stack        
which is a commonly used full-stack JavaScript framework. 

Having completed the project, our security analysis       
revealed several flaws and provided insight into major        
problems found in web applications today such as weak         
passwords, lack of data obfuscation, and inadequate access        
control. 

To test Coastline Market’s web application, a variety of         
attacks were considered. These attacks included a password        
dictionary attack, a cross-site scripting (XSS) attack, a        
man-in-the middle attack to modify payloads, and front-end        
parameter tampering. Penetration testing succeeded for three       
of the seven utilized in our analysis: the password dictionary          
attack successfully revealed one-third of all plaintext       
passwords Coastline Market customers are using, payload       
modification allowed our test user to change the profile data of           
another customer, and tampering with parameters produced       
changes to information stored on the back-end. 

Result from our tests indicated a lack of password         
restrictions and suggestions allowing for easy password       
dictionary attacks. Insecure API endpoints exposed sensitive       
user data such as customer emails and hashed passwords to          
unauthorized users Insecure verification and input sanitization       
allowed our test user to successfully tamper with payloads and          
modify users’ personal information. In addition, a lack of         
back-end authentication and user form verification allows       
attackers to tamper with front-end code to be able to change           
user’s information with the intention of making unauthorized        
changes to user data. 



2 

Based on the findings above, we recommended that        
Coastline Market updates their API endpoints to authenticate        
all requests and restrict access to sensitive user data. We also           
encouraged the company to implement stricter password       
guidelines to avoid being vulnerable to password dictionary        
attacks. In addition, API requests should be authenticated and         
encrypted to prevent payload modification through      
man-in-the-middle attacks. 

The vulnerabilities mentioned in this report have been        
reported to Coastline Market, so that they can correct and          
patch their application to make it more reliable and secure. 
 

II. ANALYZED SYSTEM 

A. Technology Stack 

Coastline Market uses the commonly-used MEAN stack,       
which is composed of MongoDB, Express, AngularJS and        
NodeJS. MongoDB is a NoSQL database which stores its         
objects as a BSON object. Express is a framework built on top            
of NodeJS and provides a robust set of features for web and            
mobile applications. AngularJS is a front-end framework used        
with JavaScript and supports two way data-binding and        
HTML templating. NodeJS is server-side JavaScript runtime       
environment built on the V8 engine. 

B. Data Flow 

1. Log In/Sign up 

 
Fig 1. Log in Flow of Coastline Market 

 
TABLE 1. ​LOG IN FLOW LEGEND 

Step Application Instruction 
1 Log in with username and password 
2 Send username and encrypted password to MongoDB 

3 a. User authenticated 
b. Reject user authentication 

4 a. Generate JWT 
b. Return invalid input parameters to user 

5 a. Give JWT to client 
6 a. Store JWT in local storage 

 
When a user first logs in, their username and password are           

sent to the server. During this process, the password is hashed           
with a known salt using the bcrypt algorithm and compared          
with a value that had been previously stored in the database. If            
the user credentials from the application match that from the          
database, then the user data is retrieved and passed onto the           
authentication middleware. From this point, the authentication       
middleware generates a JSON web token (JWT) associated        
with the user ID. It is then passed to the user so that it can be                

used for further authorization throughout the session. If,        
however, the credentials do not match, the user is prevented          
from accessing any other part of the dashboard or the rest of            
the application. 

The signup process is less restrictive, and a new user will           
receive a JWT for the session as long as input fields of            
username, email, password, Paypal account, and company       
name are correctly inputted. 
 

2. Application Usage 

 

 
Fig. 2. User Flow of Coastline Market 

 
TABLE 2. ​USER FLOW LEGEND 

Step Application Instruction 
1 RESTFUL call. send JWT 
2 Process JWT 

3 a. Accept JWT 
b. Reject JWT 

4 a. Request data from DB 
b. Return error to User 

5 a. Process data from DB 
6 a. Provide data to user 

 
Figure 2 shows the user flow of Coastline market and how           

users obtain data. A user makes a REST call (GET, POST,           
PUT, or DELETE request) which gets processed by the         
server-side code containing the authentication middleware. At       
the same time, the server also gets a JWT. This JWT is            
composed of a header, containing information that states it is a           
JWT, a payload. a hash, and an encryption algorithm used for           
the hash. The payload contains the user ID, the timestamp          
indicating when the JWT was issued, and a JWT expiry          
timestamp. The header and payload is base64 encoded and         
hashed with HMAC using SHA-256 and a secret. When the          
authentication middleware receives the JWT, it decodes the        
JWT ensuring its integrity is maintained. If the web token          
expires or the user ID after decoding is not correct, the user is             
prevented from performing that REST call. 

III. RELATED WORK 

AngularJS access control is not necessarily supported       
because it is a client-side framework and all the source code           
can be seen and inspected. There is nothing preventing users          
from tampering with the code to gain access to certain views           
or elements [3]. If real authorization is needed, then it should           
be done server-side, not with AngularJS [3]. 



3 

Since the Coastline application uses MongoDB, a NoSQL        
database, certain vulnerabilities have been found in other        
independent analyses. NoSQL injections exist for MongoDB       
in providing bypass to login scenarios [4]. To mitigate NoSQL          
injections, AppSec suggests that libraries be used to support         
parameterized quotes and to use input validation through        
means of type validation, and regular expression checks. 

IV. METHODOLOGY 

A. System Analysis 

1. Accessing unauthorized APIs 

Figure 2 shows that the JWT is the only authorizing token           
that is used to process requests. Therefore, we investigated the          
possibility of manipulating and forging the token. We first         
investigated the structure of the JWT and discovered that the          
hash used in HMAC was SHA-256. The only identifying         
information was the user ID stored in the payload. Because the           
header and payload are encoded in base64, we decided to          
generate different secret keys to see if we could retrieve the           
same HMAC value. Our first approach was to research         
common libraries utilizing JWT in the MEAN stack. and         
confirmed our original assumption that the developers used a         
JWT library such as Passport.js, simple-jwt, or jsonwebtoken.        
We then proceeded to look up boilerplate code for setting up           
JWT in which the secret string was a generic message, such as            
"secret", "my_secret", "MY_SECRET", and gathered common      
variations of these for use in in our dictionary of the most            
common 100, 000 passwords. Finally, we generated many        
HMAC hashes to see if we could generate an identical hash to            
our client’s. In addition, the dictionary words were encoded to          
base64, in case that type of encoding was used as the secret. 

 

2. Cross-site scripting/Angular Template injection 

To perform XSS attacks, we first scrutinized the JavaScript         
code available in the web pages to find missing input          
sanitization. Once candidates were found, we issued reflected        
XSS attacks on the input by setting the fields to JavaScript           
code wrapped in a <script> element. 

Since AngularJS was used, we also attempted a similar         
attack called template injection. If framework-relevant      
attributes are not properly sanitized, then we can issue a          
template injection attack to override a native function located         
inside a template. 

3. Directory traversal 

To successfully attempt a directory traversal attack, we had         
to access directories meant to be hidden from unauthorized         
users. Typically, a web application is structured to have a          
directory tree no different from a typical Unix file structure          
found on Unix-based operating systems. With the advent of         
front-end and back-end web frameworks, however, web       
application directory structures might not be reflected in the         
url. 

Knowing that the back-end framework used was Express,        

which runs on top of NodeJS, and the front-end framework          
was AngularJS, we were aware that a traditional directory         
traversal attack would most likely fail due to the way these           
frameworks organize URLs. 

4. NoSQL Injection 

Coastline Market uses MongoDB which is a NoSQL        
database and is possibly vulnerable to a NoSQL injection         
attack. We attempted a simple login form injection to try to           
gain unauthorized access to sensitive data. Using NoSQL        
specific syntax such as ‘{“$gt”: “ ”},’ meaning greater than, it           
is theoretically possible to force the middleware to perform a          
search for any user whose username were greater in value than           
an empty string (similar to using ‘OR 1=1’ in SQL injections).           
We tried to perform the same injection in the password field as            
well. 

With success, this attack should allow an attacker to gain          
unauthorized access to a different user’s dashboard or        
password, depending on the passed parameter. 

 

5. Man-in-the-Middle and Modifying Payloads 

Although the main coastlinemarket.com web address is       
protected with HTTPS, the dashboard subaddress is not. When         
a user logs in, the username and password are stored as           
plaintext in a JSON object but available in plaintext. For users           
on unprotected wireless networks, the packet containing       
username and password information would be sent during        
login and possibly exposed to eavesdroppers. Using Wireshark        
or another packet sniffer, an intruder would be able to retrieve           
both those fields and use this information to access the user’s           
account. Therefore, a man-in-the-middle attack can be       
performed to collect information about the user and pass user          
authentication checks.  

Furthermore, we analyzed the potential of intercepting API         
calls, investigating request headers, and changing parameters       
before they are sent to the server. There are many web           
debugging proxies available, such as Fiddler, that allow users         
to set breakpoints or pause POST/PUT requests. Using this         
type of program, the user input or payload data can be           
modified before it is sent to the server. 

6. Parameter tampering 

User fields can be validated on the client-side, meaning the          
browser is responsible for checking if user input is valid.          
Client-side validation is efficient because it does not require a          
roundtrip to the server. Unfortunately, client-side validation       
can be easily bypassed. If an input field is only validated via a             
CSS class, an attacker can remove the class ID from the           
HTML tag and manipulate the input field. Any kind of          
client-side sanitization or character escaping can also be        
bypassed using a web debugging proxy. Using the proxy, a          
request can be paused and the sanitized input changed before          
sending it back to the server. 



4 

7.   Password Dictionary  

As mentioned earlier in this report, during our initial         
inspection of the website, we discovered that the site relies on           
AngularJS to manage states, API calls and pages. This was an           
indicator that most of the data was likely held as state           
variables in the front-end of the application. Making a         
standard GET API call, we were able to get all user data from             
our test account. 

The user data contained an important piece of information         
for our analysis: the hashed password of each user. Since we           
had already assumed that the web application used the MEAN          
stack, we decided to test whether bcrypt had been used to hash            
the passwords, as it is a popular cryptographic library used in           
the MEAN stack.  

We obtained a list of 100,000 most commonly used         
passwords and tested it against the hashed passwords retrieved         
from the API response using a compare function available in          
the NodeJS bcrypt library. This method proved our hypothesis         
that the passwords had been hashed using bcrypt. We used the           
same procedure against other users’ retrieved account data to         
find some of the passwords using our password hash cracker.          
[6] 
 

B. Ethical Considerations 
When conducting analysis on the Coastline system, there        

were some ethical considerations to follow. Any methodology        
conducted was to provide benefit to society or stakeholders         
while preventing any harm. The penetration testing methods        
were also disclosed to system owners prior. Any results         
obtained will respect individual privacy and confidentiality by        
ensuring information is not leaked or disclosed to        
unauthorized personnel. If something was unclear, then       
guidance and advice will be sought after to ensure potential          
harms are anticipated. 

Any and all methodologies, exploits and results were first         
released to system owners to follow responsible disclosure.        
This gives owners an opportunity to patch vulnerabilities        
before details are released to the public. By publicizing the          
findings, it will help security analysts and other developers         
using the same technology stack to further investigate their         
own systems for vulnerabilities. Less vulnerabilities means       
less threats and risks to assets, which only benefits society. 
 
C. Risk Management 

By reaching an agreement with the system administrator        
and system owner, we were able to avoid much, if not all, of             
the risk associated with penetration testing. This agreement        
allowed us to test the system in various ways without being at            
risk for prosecution or legal action by the system owner, and           
each part of our security analysis was performed under         
complete permission of the company. With this being said, we          
were not allowed to issue a denial-of-service attack on the          
website, nor were we allowed to alter any user information          
already stored on Coastline Market’s server. 

V. RESULTS 

A. Failed Attacks 

1. Accessing unauthorized APIs 

When trying to gain access to unauthorized APIs, we tried          
to regenerate a valid JWT token by going through a dictionary           
of common passwords and common MEAN application       
boilerplate secrets. We were unable to resolve the secret used          
to generate the JWT used throughout the application for         
authorization.  

 
2. ​XSS (Cross-site Scripting) Attack 

We attempted to use a reflected XSS attack to glean          
information stored in the browser, specifically fields of the         
document cookie. While we were able to slightly change the          
expected behaviour of the web application by modifying        
JavaScript code, a traditional reflected XSS attack failed due         
to the built-in input sanitization AngularJS provides for        
developers. We found that when we attempted to inject a          
script tag into all the fields of Coastline Market’s account          
settings page, the output was sanitized. 

 
3. Directory Traversal Attack 

Like we had hypothesized, the directory traversal attack        
failed. As mentioned in the ​Methodologies section, the        
Coastline Market web application is built using AngularJS and         
the Express back-end framework for NodeJS. Neither of these         
frameworks organize urls traditionally, and use routes instead        
to indicate the page the user is currently on. Because of this,            
attempting to access a server directory with a url not directly           
correlated to a file path rendered this attack useless. 

 
B. Successful Attacks 

1. Password Dictionary Attack 

The password dictionary attack on the discovered password        
hashes compared against a list of 100,000 most common user          
passwords yielded a list of 27 user passwords. This in addition           
to observing the forms on the web application itself allows us           
to conclude that weak password restrictions and suggestions        
for stronger password use are not enforced. 

2. Man-in-the-Middle Attack 

Since the dashboard page was not secured through HTTPS,         
we were able to attempt a man in the middle attack. The open             
API calls gave us access to the entire user list, along with their             
user IDs, we are able to use this information to modify another            
user’s existing data. We know that their technology stack uses          
MongoDB and MongoDB generates a random ID for every         
new document that is submitted. If the web application uses          
the generated ID to do user lookups and user updates, we can            
modify the payload data so that any updates we want, will be            
posted to any victim of our choosing. Once we changed the ID            
of the JSON data with Fiddler, we were able to update another            
user’s account. Even without access to all the user IDs, an           



5 

attacker can simply generate many random IDs until a         
successful POST response is returned. The attacker may not         
know which account was modified, but that some account was          
modified successfully. 

3. Parameter Tampering 

During the man in the middle attack and editting another          
user’s information, we noticed a field that was disabled for the           
user also propagated to the victim account. This lead us to           
believe that perhaps the field is simply disabled on the client           
side. Parameters like drop down menus could have new inputs          
inserted, along with being able to update disabled fields. 

VI. DISCUSSION 

A. Interpretation of Results 

The success of the payload modification and allowing users         
to update another user’s information was largely due to the          
fact that all MongoDB generated IDs were obtained. A simple          
assumption that any updates to a user profile would be          
matched with the user ID. 

Having access to the entire user list also made it possible           
for the dictionary password attack. The success rate of getting          
an account password is heavily dependent on how often         
people use the most common passwords. 

Overall, by inadvertently allowing users see the entire user         
list lead to the two successful attacks, which can cause a lot of             
damage not only to the users of the system, but also the            
reputation of Coastline Market. 

With respect to the 3 security principles of confidentiality,         
integrity and availability, we discovered vulnerabilities which       
violated the first two principles. 

Confidentiality was reduced. This was due to the fact that          
some of the api endpoints were unauthorized giving anyone         
access to the entire list of customer emails and password          
hashes. Also poor password standards allowed us to obtain a          
fair number of user passwords through the password        
dictionary attack. 

Integrity of user data was also compromised since we were          
able to modify payload data and change a different user’s          
information using a man in the middle attack. 

The third principle was availability was not affected since         
none of the attacks performed were able to successfully         
disrupt service of the web application itself. A denial of          
service attack may have possibly allowed us to overload the          
servers with requests causing them to crash but this is a rather            
trivial attack and was not within the scope of our particular           
analysis. 
 

B. Principles of Designing the Secure System 

Following our findings, we were able to determine three         
main security principles that were violated by Coastline        
Marketplace. The first violated principle is least privilege,        
which indicates that any user should be given the least amount           
of privilege to accomplish a task. The company’s web         

application allows the general public to access their list of          
customers, which should only be seen by internal members of          
the team. Coastline Market customers and regular internet        
users should not be able to access the personal information of           
other customers. 

The second main principle violated is fail-safe defaults.        
This privilege indicates that a system should not reveal any          
more sensitive information about itself when it fails than if it           
works as expected. In our analysis, we found that tampering          
with the JavaScript code and changing the states the         
application was supposed to be in at a given time resulted in            
unexpected behaviour that temporarily removed data stored       
related to our account. By definition, this indicated that when          
the system failed, it resulted in behaviour that was not only           
unexpected, but possibly dangerous as well. 

The last main unfollowed security principle we had        
discussed was separation of duties. Given the type of         
information we were able to successfully retrieve from the         
web application, we were able to determine that this         
information should not be accessed by anyone outside an         
internal team, specifically customer service or development.       
However, similar to the incident discussed in least privileges,         
any unauthorized user had unobscured and unencrypted access        
to all customer data stored in the company’s database. This          
finding indicated to us that proper precautions were not taken          
to explicitly separate unauthorized and authorized users from        
internal company employee roles, thus violating this principle. 

VII. RECOMMENDATIONS 

From our security analysis we proposed a couple of         
recommendations that would make Coastline Market more       
secure.  

 
A. Proper use of HTTPS 

Although the main website is protected with HTTPS, the         
dashboard component of Coastline Market is still using HTTP.         
We recommend using HTTPS on all webpages because then         
the users would not be able to modify payload data and change            
fields of other users as described earlier. HTTPS encrypts all          
traffic from user's web browsers to the server of Coastline          
Market.  
Another danger of not using HTTPS is that confidential 
information such as usernames and passwords are sent over 
the network in plain text. This means that if a user in Coastline 
Market was logging in to the website from a public wifi 
network, an adversary may listen in on all the packets 
transferred over the local network and therefore retrieve the 
information from the Coastline Market user. This would 
compromise the user's account and would therefore tarnish 
their relationship with Coastline Market. 
 
B. Protect API endpoints 

From our analysis, we discovered that although most        
endpoints are protected with the authentication middleware,       
some of them are not. Unprotected endpoints is a huge          



6 

vulnerability in that it allows users to retrieve information from          
the application which is unnecessary and could be detrimental.         
One of the endpoints in particular;      
http://api.coastlinemarket.com/api/fisheries, provide a list of all      
the fisheries with the users information such as name, e-mail          
and hashed passwords. An adversary with this information        
could then do potential harm by exposing or selling user          
information to parties, or in our case by trying to match the            
password hashes by using a password dictionary attack to gain          
access into their Coastline Market accounts. 
 
C. Strong Passwords 

One of the vulnerabilities that allowed us to perform a          
dictionary attack on the users was that the passwords were too           
simple. By performing a common password dictionary attack,        
we were able to compromise the confidentiality of 33% of the           
users. Using a standard password scheme that follows the         
guidelines: 

❖ 8 characters to 20 characters 
❖ contain one number 
❖ contain one lowercase 
❖ contain one uppercase 
❖ contain one symbol 

would greatly improve the security of the user accounts. 
 
D. Timeout after too many failed attempts 

Ensuring customer data integrity is very important, and        
that is why we also recommend a timeout after failing to login            
with too many failed attempts. If an adversary had unlimited          
access to perform a dictionary attack on a user account by           
trying all combinations using a script, this has several         
consequences. The server hosting Coastline Market may slow        
down overtime because many POST requests when trying to         
test passwords in the dictionary attack accounts through the         
web interface. Another consequence is that the user account         
could potentially be compromised given the adversary has a         
certain amount of time to guess the password. By         
implementing a timeout, this prevents exhaustive search by        
expanding the time it takes for them to crack user passwords           
past their own life time. 

Another way to prevent automated attacks against       
Coastline Market is the implement a CAPTCHA system in         
which only users should be detected and have access to. 

 
E. Move user input validation to server side 

There were a couple of forms on the dashboard which has           
client-side validation. For example, in the update settings page,         
users were able to tamper with the parameters to update fields           
they should not have access to. We recommend sanitizing all          
inputs on server side, as well as performing to appropriate          
checks so that all information that is allowed to be updated on            
the database is as expected.  
 
F. Use RSA Encryption with JWT 

Although we were unable to re-generate a valid JWT as          
we were unable to resolve the secret used to generate the JWT,            
we recommend using RSA encryption with a private key. By          
using a public and private key encryption scheme, this relies on           
a secure framework that is deemed more secure that the          
standard symmetric key framework that is currently used by         
HMAC-SHA-256. The JWT is the most important validator for         
Coastline Market and we believe by switching to RSA         
encryption, Coastline Market can have more peace of mind         
when it comes to the security of their customers and the           
application. 

VIII. CONCLUSIONS 

The integrity and confidentiality of Coastline’s customer       
data is important to maintain a trusted relationship. Coastline         
uses the MEAN stack to build their web application which          
provides it’s own security against the most common web         
attacks such as XSS and directory traversals. We found         
information leaks (entire user information) through other       
channels, which allowed for password dictionary attacks and        
also modifying another user’s information using the hidden        
user ID. A total of 27 of 82 accounts were compromised and            
the potential for a malicious user to do a lot of damage with the              
user database. It is up to the developers to follow secure design            
principles like separation of duties, giving user accounts with         
the least privilege and fail-safe defaults. Following the        
guidelines and implementing the recommended protocols, it       
can prevent information leaks and account compromises. 
 

REFERENCES 

[1] C. Market, "Coastline Market", Coastlinemarket.com, 2016. [Online].       
Available: https://www.coastlinemarket.com/. [Accessed: 08- Nov-     
2016]. 

[2] McAfee Labs, "2016 Threats Predictions", McAfee Labs, 2016. 

[3] G. Heyes, "XSS without HTML: Client-Side Template Injection with         
AngularJS", Blog.portswigger.net, 2016. [Online]. Available:     
http://blog.portswigger.net/2016/01/xss-without-html-client-side-templat
e.html. [Accessed: 14- Oct- 2016]. 

[4] “Techniques for authentication in AngularJS applications – Opinionated        
AngularJS", Medium, 2014. [Online]. Available:     
https://medium.com/opinionated-angularjs/techniques-for-authentication
-in-angularjs-applications-7bbf0346acec#.fro925uea. [Accessed: 14-   
Oct- 2016]. 

[5] "AppSec Labs", AppSec Labs, 2016. [Online]. Available:       
https://www.owasp.org/images/e/e3/AppSecIL_2014_In-Secure_Mongo
_And_Angular_Code_-_Israel_Chorzevski.PDF. [Accessed: 14- Oct-    
2016 

[6] https://gist.github.com/abrarmusa/b8fd595fabcebbf4ad2e25372092bf04 
 
 

APPENDIX A: ACM CODE OF CONDUCT 

PRINCIPLES 
 
Principle 1: PUBLIC 
 



7 

Software engineers shall act consistently with the public        
interest. In particular, software engineers shall, as appropriate: 
 
1.01. Accept full responsibility for their own work. 
 
1.02. Moderate the interests of the software engineer, the         
employer, the client and the users with the public good. 
 
1.03. Approve software only if they have a well-founded         
belief that it is safe, meets specifications, passes appropriate         
tests, and does not diminish quality of life, diminish privacy or           
harm the environment. The ultimate effect of the work should          
be to the public good. 
 
1.04. Disclose to appropriate persons or authorities any actual         
or potential danger to the user, the public, or the environment,           
that they reasonably believe to be associated with software or          
related documents. 
 
1.05. Cooperate in efforts to address matters of grave public          
concern caused by software, its installation, maintenance,       
support or documentation. 
 
1.06. Be fair and avoid deception in all statements, particularly          
public ones, concerning software or related documents,       
methods and tools. 
 
1.07. Consider issues of physical disabilities, allocation of        
resources, economic disadvantage and other factors that can        
diminish access to the benefits of software. 
 
1.08. Be encouraged to volunteer professional skills to good         
causes and contribute to public education concerning the        
discipline. 
 
Principle 2: CLIENT AND EMPLOYER 
 
Software engineers shall act in a manner that is in the best            
interests of their client and employer, consistent with the         
public interest. In particular, software engineers shall, as        
appropriate: 
 
2.01. Provide service in their areas of competence, being         
honest and forthright about any limitations of their experience         
and education. 
 
2.02. Not knowingly use software that is obtained or retained          
either illegally or unethically. 
 
2.03. Use the property of a client or employer only in ways            
properly authorized, and with the client's or employer's        
knowledge and consent. 
 
2.04. Ensure that any document upon which they rely has been           
approved, when required, by someone authorized to approve        

it. 
 
2.05. Keep private any confidential information gained in their         
professional work, where such confidentiality is consistent       
with the public interest and consistent with the law. 
 
2.06. Identify, document, collect evidence and report to the         
client or the employer promptly if, in their opinion, a project is            
likely to fail, to prove too expensive, to violate intellectual          
property law, or otherwise to be problematic. 
 
2.07. Identify, document, and report significant issues of        
social concern, of which they are aware, in software or related           
documents, to the employer or the client. 
 
2.08. Accept no outside work detrimental to the work they          
perform for their primary employer. 
 
2.09. Promote no interest adverse to their employer or client,          
unless a higher ethical concern is being compromised; in that          
case, inform the employer or another appropriate authority of         
the ethical concern. 
 
Principle 3: PRODUCT 
 
Software engineers shall ensure that their products and related         
modifications meet the highest professional standards      
possible. In particular, software engineers shall, as       
appropriate: 
 
3.01. Strive for high quality, acceptable cost and a reasonable          
schedule, ensuring significant tradeoffs are clear to and        
accepted by the employer and the client, and are available for           
consideration by the user and the public. 
 
3.02. Ensure proper and achievable goals and objectives for         
any project on which they work or propose. 
 
3.03. Identify, define and address ethical, economic, cultural,        
legal and environmental issues related to work projects. 
 
3.04. Ensure that they are qualified for any project on which           
they work or propose to work by an appropriate combination          
of education and training, and experience. 
 
3.05. Ensure an appropriate method is used for any project on           
which they work or propose to work. 
 
3.06. Work to follow professional standards, when available,        
that are most appropriate for the task at hand, departing from           
these only when ethically or technically justified. 
 
3.07. Strive to fully understand the specifications for software         
on which they work. 
 



8 

3.08. Ensure that specifications for software on which they         
work have been well documented, satisfy the users’        
requirements and have the appropriate approvals. 
 
3.09. Ensure realistic quantitative estimates of cost,       
scheduling, personnel, quality and outcomes on any project on         
which they work or propose to work and provide an          
uncertainty assessment of these estimates. 
 
3.10. Ensure adequate testing, debugging, and review of        
software and related documents on which they work. 
 
3.11. Ensure adequate documentation, including significant      
problems discovered and solutions adopted, for any project on         
which they work. 
 
3.12. Work to develop software and related documents that         
respect the privacy of those who will be affected by that           
software. 
 
3.13. Be careful to use only accurate data derived by ethical           
and lawful means, and use it only in ways properly authorized. 
 
3.14. Maintain the integrity of data, being sensitive to outdated          
or flawed occurrences. 
 
3.15 Treat all forms of software maintenance with the same          
professionalism as new development. 
 
Principle 4: JUDGMENT 
 
Software engineers shall maintain integrity and independence       
in their professional judgment. In particular, software       
engineers shall, as appropriate: 
 
4.01. Temper all technical judgments by the need to support          
and maintain human values. 
 
4.02 Only endorse documents either prepared under their        
supervision or within their areas of competence and with         
which they are in agreement. 
 
4.03. Maintain professional objectivity with respect to any        
software or related documents they are asked to evaluate. 
 
4.04. Not engage in deceptive financial practices such as         
bribery, double billing, or other improper financial practices. 
 
4.05. Disclose to all concerned parties those conflicts of         
interest that cannot reasonably be avoided or escaped. 
 
4.06. Refuse to participate, as members or advisors, in a          
private, governmental or professional body concerned with       
software related issues, in which they, their employers or their          
clients have undisclosed potential conflicts of interest. 

 
Principle 5: MANAGEMENT 
 
Software engineering managers and leaders shall subscribe to        
and promote an ethical approach to the management of         
software development and maintenance . In particular, those        
managing or leading software engineers shall, as appropriate: 
 
5.01 Ensure good management for any project on which they          
work, including effective procedures for promotion of quality        
and reduction of risk. 
 
5.02. Ensure that software engineers are informed of standards         
before being held to them. 
 
5.03. Ensure that software engineers know the employer's        
policies and procedures for protecting passwords, files and        
information that is confidential to the employer or confidential         
to others. 
 
5.04. Assign work only after taking into account appropriate         
contributions of education and experience tempered with a        
desire to further that education and experience. 
 
5.05. Ensure realistic quantitative estimates of cost,       
scheduling, personnel, quality and outcomes on any project on         
which they work or propose to work, and provide an          
uncertainty assessment of these estimates. 
 
5.06. Attract potential software engineers only by full and         
accurate description of the conditions of employment. 
 
5.07. Offer fair and just remuneration. 
 
5.08. Not unjustly prevent someone from taking a position for          
which that person is suitably qualified. 
 
5.09. Ensure that there is a fair agreement concerning         
ownership of any software, processes, research, writing, or        
other intellectual property to which a software engineer has         
contributed. 
 
5.10. Provide for due process in hearing charges of violation          
of an employer's policy or of this Code. 
 
5.11. Not ask a software engineer to do anything inconsistent          
with this Code. 
 
5.12. Not punish anyone for expressing ethical concerns about         
a project. 
 
Principle 6: PROFESSION 
 
Software engineers shall advance the integrity and reputation        
of the profession consistent with the public interest. In         



9 

particular, software engineers shall, as appropriate: 
 
6.01. Help develop an organizational environment favorable to        
acting ethically. 
 
6.02. Promote public knowledge of software engineering. 
 
6.03. Extend software engineering knowledge by appropriate       
participation in professional organizations, meetings and      
publications. 
 
6.04. Support, as members of a profession, other software         
engineers striving to follow this Code. 
 
6.05. Not promote their own interest at the expense of the           
profession, client or employer. 
 
6.06. Obey all laws governing their work, unless, in         
exceptional circumstances, such compliance is inconsistent      
with the public interest. 
 
6.07. Be accurate in stating the characteristics of software on          
which they work, avoiding not only false claims but also          
claims that might reasonably be supposed to be speculative,         
vacuous, deceptive, misleading, or doubtful. 
 
6.08. Take responsibility for detecting, correcting, and       
reporting errors in software and associated documents on        
which they work. 
 
6.09. Ensure that clients, employers, and supervisors know of         
the software engineer's commitment to this Code of ethics, and          
the subsequent ramifications of such commitment. 
 
6.10. Avoid associations with businesses and organizations       
which are in conflict with this code. 
 
6.11. Recognize that violations of this Code are inconsistent         
with being a professional software engineer. 
 
6.12. Express concerns to the people involved when        
significant violations of this Code are detected unless this is          
impossible, counterproductive, or dangerous. 
 
6.13. Report significant violations of this Code to appropriate         
authorities when it is clear that consultation with people         
involved in these significant violations is impossible,       
counterproductive or dangerous. 
 
Principle 7: COLLEAGUES 
 
Software engineers shall be fair to and supportive of their          
colleagues. In particular, software engineers shall, as       
appropriate: 
 

7.01. Encourage colleagues to adhere to this Code. 
 
7.02. Assist colleagues in professional development. 
 
7.03. Credit fully the work of others and refrain from taking           
undue credit. 
 
7.04. Review the work of others in an objective, candid, and           
properly-documented way. 
 
7.05. Give a fair hearing to the opinions, concerns, or          
complaints of a colleague. 
 
7.06. Assist colleagues in being fully aware of current         
standard work practices including policies and procedures for        
protecting passwords, files and other confidential information,       
and security measures in general. 
 
7.07. Not unfairly intervene in the career of any colleague;          
however, concern for the employer, the client or public         
interest may compel software engineers, in good faith, to         
question the competence of a colleague. 
 
7.08. In situations outside of their own areas of competence,          
call upon the opinions of other professionals who have         
competence in that area. 
 
Principle 8: SELF 
 
Software engineers shall participate in lifelong learning       
regarding the practice of their profession and shall promote an          
ethical approach to the practice of the profession. In particular,          
software engineers shall continually endeavor to: 
 
8.01. Further their knowledge of developments in the analysis,         
specification, design, development, maintenance and testing of       
software and related documents, together with the       
management of the development process. 
 
8.02. Improve their ability to create safe, reliable, and useful          
quality software at reasonable cost and within a reasonable         
time. 
 
8.03. Improve their ability to produce accurate, informative,        
and well-written documentation. 
 
8.04. Improve their understanding of the software and related         
documents on which they work and of the environment in          
which they will be used. 
 
8.05. Improve their knowledge of relevant standards and the         
law governing the software and related documents on which         
they work. 
 
8.06 Improve their knowledge of this Code, its interpretation,         



10 

and its application to their work. 
 
8.07 Not give unfair treatment to anyone because of any          
irrelevant prejudices. 
 
8.08. Not influence others to undertake any action that         
involves a breach of this Code. 
 
8.09. Recognize that personal violations of this Code are         
inconsistent with being a professional software engineer. 
 
This Code was developed by the ACM/IEEE-CS joint task         
force on Software Engineering Ethics and Professional       
Practices (SEEPP): 
 
Executive Committee: Donald Gotterbarn (Chair), Keith      
Miller and Simon Rogerson; 
 
Members: Steve Barber, Peter Barnes, Ilene Burnstein,       
Michael Davis, Amr El-Kadi, N. Ben Fairweather, Milton        
Fulghum, N. Jayaram, Tom Jewett, Mark Kanko, Ernie        
Kallman, Duncan Langford, Joyce Currie Little, Ed Mechler,        
Manuel J. Norman, Douglas Phillips, Peter Ron Prinzivalli,        
Patrick Sullivan, John Weckert, Vivian Weil, S. Weisband and         
Laurie Honour Werth. 
 
This Code may be published without permission as long as it           
is not changed in any way and it carries the copyright notice.            
Copyright (c) 1999 by the Association for Computing        
Machinery, Inc. and the Institute for Electrical and Electronics         
Engineers, Inc. 

APPENDIX B: RESPONSIBLE DISCLOSURE 

The findings of the project were reported to the owners of           
Coastline Market through a comprehensive final report. The        
owners will receive this report no later than December 2nd          
2016. The owners names, emails, and phone numbers are         
Joseph Lee, joseph@coastline.com, and 7789196070. Due to       
geographical constraints, we are unable to schedule a        
face-to-face meeting with the system owner. However we will         
discuss our findings with the system owners through email         
and/or phone. The main objectives of this meeting should be          
(1) to debrief the system owner about the findings of the           
project, (2) to discuss the project team or the course professor           
can collaborate with the system owner on developing        
countermeasures for the discovered vulnerabilities, and (3) to        
determine the timeline for making the project findings public.         
We will send an e-mail message (CC-ed to Kosta) to the           
system owner, describing outcomes of the meeting and any         
resolutions/decisions/agreements made during the meeting. 


