
CPSC 320 Sample Solution, Asymptotic Analysis

September 21, 2016

1 Comparing Orders of Growth for Functions

For each of the functions below, give the best Θ bound you can �nd and then arrange these functions by
increasing order of growth. Note that the last two are challenge problems.

SOLUTION:

Original function Good Θ bound Notes
lnn Θ(lg n) log n, lg n, and lnn di�er by a constant factor
n

logn Θ( n
lgn) But that does not make log n a constant factor!

55n + 4 Θ(n)
1.5n lg n Θ(n lg n)
2n log(n2) = 4n log n Θ(n lg n) (same �rank� as previous line)
n + n2 Θ(n2)
(n lg n)(n + 1) = n2 lg n + n lg n Θ(n2 lg n)
√
n
√
n

= (n
1
2 )
√
n Θ(n

√
n
2

) (we can argue about the �best� form of this)
2n Θ(2n)
1.62n = (1.62)n = 2.56n Θ(2.56n)
n! Θ(n!)
(n + 1)! Θ((n + 1)!) = Θ(n× n!)

Note: lg n = log2 n, lnn = loge n, and log n = log10 n.

For the comparison of n
√
n
2 and 2n, one approach is to make them look more similar. f(x) = 2lg f(x).

So, n
√
n
2 = 2lgn

√
n
2 = 2

√
n
2

lgn. Now, if we take the ratio of these two functions: 2n

2

√
n
2 lgn

= 2n−
√

n
2

lgn.

n −
√
n
2 lg n ∈ Θ(n); so, 2n−

√
n
2

lgn goes to in�nity, and 2n dominates our big nasty function. Just for fun,
note that that means our big nasty function is sub-exponential yet super-polynomial.

2 Functions/Orders of Growth for Code

Give and brie�y justify good Θ bounds on the worst-case running time of each of these pseudocode
snippets dealing with an array A of length n. Note: we use 1-based indexing; so, the legal indexing of A is:
A[1], A[2], . . . , A[n].

SOLUTION NOTES: I've annotated the pseudocode below with notes and put my conclusions on
worst-case running time below. Note: any line of code that is executed takes Ω(1) time (i.e., at least some
constant amount of time to process); so, anything I annotate as O(1) is in Θ(1).

Finding the maximum in a list:

Let max = -infinity O(1)

For each element a in A: n iterations
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If max < a: O(1) could make this true often, but with..

Set max to a O(1) no asymp diff to loop body runtime anyway

Return max O(1)

SOLUTION: n iterations of a loop whose body takes constant time to run�regardless of the condi-
tional contained inside�plus some constant-time setup and teardown. Overall, this is Θ(n).

�Median-of-three� computation:

Let first = A[1] O(1)

Let last = A[n] O(1)

Let middle = A[floor(n/2)] O(1)

If first < last And first < middle: O(1)

return first O(1)

Else If middle < first And middle < last: O(1)

return middle O(1)

Else: O(1)

return last O(1)

SOLUTION: Nothing exciting happening here. Every single operation is O(1); so, it doesn't matter
what happens in the conditional, the whole thing takes Θ(1) time.

Counting inversions:

Let inversions = 0 O(1)

For each index i from 1 to n: n iterations

For each index j from (i+1) to n: n-i iterations

If a[i] > a[j]: O(1)

Increment inversions O(1)

Return inversions O(1)

SOLUTION: The inner loop takes constant time per iteration. I've seen many times the pattern of
n− i iterations of an inner loop within an outer loop that lets i range over n values. So, I might jump to
saying this is Θ(n2), but let's get there step by step.

We can express the runtime as a sum:

n∑
i=1

n∑
j=i+1

1 =
n∑

i=1

(n− i)

= (
n∑

i=1

n)− (
n∑

i=1

i)

= n2 − n(n + 1)

2

= n2 − n2 + n

2
= n2/2− n/2

∈ Θ(n2)

It's interesting to note also that in the worst case, where the array is in reverse-sorted order, we increment
inversions Θ(n2) times as well, which means there can be Θ(n2) inversions in an array of length n. We'll
end up coming back to that.
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3 Progress Measures for While Loops

Assume that FindNeighboringInversion(A) consumes an array A and returns an index i such that A[i]
> A[i+1] or returns -1 if no such inversion exists. Let's work out a bound on the number of iterations of
the loop below in terms of n, the length of the array A.

Let i = FindNeighboringInversion(A)

While i >= 0:

Swap A[i] and A[i+1]

Set i to FindNeighboringInversion(A)

1. Give and work through two small inputs that will be useful for studying the algorithm. (What
is �useful�? Try to �nd one that is simply common/representative and one that really stresses the
algorithm.)

SOLUTION: Let's try this as a �representative� input [8, 2, 3, 9, 7]. And, how about this to
stress the algorithm, because it has the maximum possible number of inversions (each pair of elements
is inverted with respect to each other) [4, 3, 2, 1]?

The algorithm is �non-deterministic� in the sense that it doesn't specify which inversion to select at
each step. I'll try the leftmost and think back to this decision as I solve future parts, in case it's
important.

Then, for the �rst example:

[8, 2, 3, 9, 7]

[2, 8, 3, 9, 7]

[2, 3, 8, 9, 7]

[2, 3, 8, 7, 9]

[2, 3, 7, 8, 9]

That happens to be the same number of steps as the number of inversions (4) in the input.

For the second:

[4, 3, 2, 1]

[3, 4, 2, 1]

[3, 2, 4, 1]

[2, 3, 4, 1]

[2, 3, 1, 4]

[2, 1, 3, 4]

[1, 2, 3, 4]

Again, that happens to be the same number of steps as the number of inversions (6)! (Cool, but
perhaps totally irrelevant.)

2. De�ne an inversion (not just a neighboring one), and prove that if an inversion exists at all,

a neighboring inversion exists.

SOLUTION: Well, here's the de�nition of a neighboring inversion �an index i such that A[i] >

A[i+1]�. The neighboring part is because we compare index i to index i+1. So, let's let it be any
two indexes, but insist their elements are out of order with respect to the indexes: �indexes i and j

where i < j but A[i] > A[j]�.

Let's double-check that that makes sense. It means one element comes before another in the array
and yet is larger, which seems reasonable. It applies to the 8 and 3 in our �rst small example but not
to the 8 and 9. It applies to every pair of elements in our second example.

3



3. Give upper- and lower-bounds on the number of inversions in A.

SOLUTION: By our de�nition, an inversion requires two distinct elements of A. There are
(
n
2

)
=

n(n−1)
2 = n2

2 −
n
2 pairs. Can they all be inverted? In our second example, we do achieve 42

2 −
4
2 =

8 − 2 = 6 inverted pairs. If we extend our second example to an array of length n in reverse-sorted
order, then any pair of elements A[i] and A[j] with i < j will indeed be out-of-order with respect
to each other.

So, the upper-bound is
(
n
2

)
∈ O(n2).

An already-sorted array will have no inversions. So, the lower bound is 0.

4. Give a �measure of progress� for each iteration of the loop in terms of inversions. (I.e., how can we
measure that we're making progress toward terminating the loop?)

SOLUTION: In our examples above, we took exactly as many steps as there were inversions. That's
because each swap patched an inversion without �disturbing� any others (because all elements besides
the two swapped were still in the same order with respect to each other).1 So, one measure of progress
would be the number of remaining inversions, which goes down by 1 at each iteration.

5. Give an upper-bound on the number of iterations the loop could take.

Since we reduce the number of inversions by 1 in each iteration and the number of inversions is at
most

(
n
2

)
∈ O(n2), then that is also an upper-bound on the number of iterations of the loop.

(Note that the loop ends when the number of inversions is equal to zero. This may be non-obvious,
since it's not immediately clear that an inversion implies a neighboring inversion. One good, simple
argument of this point is: if there are no neighboring inversions, then the array is clearly in sorted
order; so, there are no inversions. We can also make an inductive argument (on the �width� of the
inversion) that this is true. If an inversion isn't already neighboring, consider the index j-1. Since the
inversion isn't neighboring, i < j-1 < j. If A[i] > A[j-1], then by induction there's a neighboring
inversion. Otherwise, A[i] < A[j-1] and we know A[i] > A[j]; so, A[j-1] > A[j], and there's a
neighboring inversion at j-1.2)

6. Prove that this algorithm sorts the array A (i.e., removes all inversions from the array).

SOLUTION: The loop terminates in a �nite number of steps with no inversions (including neigh-
boring inversions), which is exactly the characteristic of a sorted array.

1Note that this is true regardless of the arbitrary choice we made to address the leftmost neighboring inversion �rst.
2I'm assuming distinct elements, but the proof proceeds essentially the same with duplicates allowed.
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