
Olympic Scheduling

September 25, 2016

You are in charge of a live-streaming YouTube channel for the Olympics that promises never to interrupt
an event. (So, once you start playing an event, you must play only that event from the time it starts to
the time it �nishes.) You have a list of the events, where each event includes its: start time, �nish

time (which must be after its start time), and expected audience value. Your goal is to make a

schedule to broadcast the most valuable complete events. The best schedule is the one with

the highest-valued event; in case of ties, compare second-highest valued events, and so on.
(So, for example, you obviously will include the single highest-valued event in the Olympics�presumably
the hockey gold medal game�no matter what else it blocks you from showing.)

(Times when you're not broadcasting events will be �lled with �human interest stories� that have zero
value; so, they're irrelevant.)

ASSUME: all event values are distinct and all event times are distinct. I.e., for any two
values vi and vj with i 6= j, vi 6= vj . The same holds for start and end times (e.g., for any two start times
si and sj with i 6= j, si 6= sj). Further, for any two start and �nish times si and fj , whether i = j or not,
si 6= fj .

1 Naïve Algorithm

Consider the following algorithm. Assume that deleting an event from a list of events takes constant time.

Naive(E):

result = new empty list of events

while E is not empty:

bestEvent = E[0]

for each e in E:

if value(e) > value(bestEvent):

bestEvent = e

delete bestEvent from E

for each e in E:

if start(e) < finish(bestEvent) and finish(e) > start(bestEvent):

delete e from E

add bestEvent to result

return result

1.1 Finiteness

Brie�y sketch a proof that the while loop in the algorithm above terminates. You need not give a formal
proof, but you should include all key insights in the proof.

1.2 E�ciency

Give and brie�y justify a good asymptotic bound on the runtime of the algorithm.

1

1.3 Correctness

Brie�y sketch a proof that the algorithm is correct. You need not give a formal proof, but you should
include all key insights in the proof.

2 Reduction on Simpli�ed Problem

To make the Olympic Broadcasting problem simpler, we completely remove start time and �nish times
from the problem. So, now events only have values (not times), and a �schedule� is just a set of selected
events. To make it slightly harder again, you are not allowed to select two events i and j if their values are
within 10 units of each other: |vi − vj | ≤ 10.

Give a correct reduction from this simpli�ed Olympic Broadcasting problem to the sorting problem
(where you provide both a list of items and a function to compare two items). Your reduction should take
O(n lg n) time.

NOTE: You will likely �nd that (a) you can solve this with a single call to the sorting problem's
solution algorithm and (b) producing the sorting instance is the easier part and transforming the solution
to sorting into a solution to this simpli�ed Olympic Broadcasting problem is the harder part. Don't forget
to do both!

3 Olympic Reduction, BONUS ONLY

This was signi�cantly harder than we intended it to be! So, we removed it from the quiz/assignment. It's
a bonus problem worth two CPSC 320 bonus points for extremely clear, correct, and e�cient responses.
(Extremely clear reductions that take O(n) time�not counting an O(1) number of calls to a sorting
algorithm�may receive 3 bonus points, but we don't know if such reductions are possible.)

Give a correct and e�cient reduction from the Olympic broadcasting problem to the sorting problem
(where you provide both a list of items and a function to compare two items). Your reduction�combined
with an O(n lg n) sorting algorithm�should be asymptotically more e�cient than the naïve algorithm
above.

3.1 Correctness

Brie�y sketch a proof that your algorithm is correct. You need not give a formal proof, but you should
include all key insights in the proof.

3.2 E�ciency

Give and brie�y justify a good asymptotic bound on the runtime of just your reduction, not including
the call to the sorting algorithm. So, for the purposes of this asymptotic bound, you can imagine that we
somehow solve sorting in constant time. (Note: it's possible to give a reduction that takes O(n) time.)

2

	Naïve Algorithm
	Finiteness
	Efficiency
	Correctness

	Reduction on Simplified Problem
	Olympic Reduction, BONUS ONLY
	Correctness
	Efficiency

