
CPSC 320 Sample Solution: DP in 2-D

November 6, 2016

The Longest Common Subsequence of two strings A and B is the longest string whose letters appear in

order (but not necessarily consecutively) within both A and B. For example, the LCS of eleanor and naomi

is the length 2 string no (or equivalently the length 2 string ao).

(Biologists: If these were DNA base or amino acid sequences, can you imagine how this might be a

useful problem?)

1. Write at least three trivial or small examples and their solutions.

SOLUTION: A natural trivial example is two empty strings. Their LCS is also the empty string.

In fact, that generalizes to any example where one of the strings (A or B) is empty. In that case, the

LCS will also be empty.

Here are some other small instances:

� �a� and �a�: LCS of �a� of length 1. (We could think of that is one more than what we get

recursing on the two empty strings formed when we set aside the letter �a� for inclusion in the

LCS.)

� �a� and �b�: LCS of the empty string (��)

� �ab� and �a�: Somehow, we need to �strip o�� the �b� from the �rst string to get at the LCS of

�a�.

2. Consider the two strings tycoon and country. Describe the relationship of the length of their LCS

with the length of the LCS of tycoon and countr (the same string A and string B with its last letter

removed).

SOLUTION: The length of the LCS of tycoon and country is at least as great as the LCS of tycoon

and countr. Indeed, the LCS of tycoon and countr is also a common subsequence (if not necessarily

the longest one) of tycoon and country.

3. Now consider the two strings stable and marriage. Describe the relationship of the length of their

LCS with the length of the LCS of stabl and marriag (strings A and string B with their last letters

removed).

SOLUTION: The length of the LCS of stable and marriage is one longer than the length of the

LCS of stabl and marriag because we �lose� the �nal matching letter e, which is part of the LCS of

the original strings.

4. Given two strings A and B of length n > 0 and m > 0, break the problem of �nding the length of the

LCS LLCS(A[1..n], B[1..m]) down into a recurrence over smaller problems. USE and generalize

your work in the previous problems!

LLCS(A[1..n], B[1..m]) =

the ________________ of

1



___________________________________________,

___________________________________________, and

___________________________________________

SOLUTION: If the last letters match, then we are in a situation like with stable and marriage:

we can move to a subproblem that excludes the �nal letters of both strings, noting that the LCS of

the original strings is one longer than the LCS of the shorter strings.

Otherwise, either the last character of A or the last character of B (or both) is not in the LCS. So,

we can recurse twice, once with each string truncated, as in the tycoon and countr example. That

gives us:

LLCS(A[1..n], B[1..m]) =

the _____max________ of

_LLCS(A[1..n-1], B[1..m])__________________,

_LLCS(A[1..n], B[1..m-1])__________________, and

_if A[n] = B[m]: LLCS(A[1..n-1], B[1..m-1]) + 1_

5. Given two strings A and B, if either has a length of 0, what is the length of their LCS?

SOLUTION: This is our trivial case. The length in this case is zero.

6. The previous two problems give a recurrence to solve LLCS. Does this recurrence repeatedly solve

suproblems many times? (That is, might we want to use memoization or dynamic programming on

it?) Sketch enough of the recursion tree to justify your answer.

SOLUTION: Absolutely! Consider that all three recursive calls lead (via a second call in the �rst

two cases and directly in the third) to the case where both strings are one letter shorter. We will

solve certain subproblems exponentially often if we naively implement this algorithm.

7. Convert your recurrence into a memoized solution to the LLCS problem.

SOLUTION: We'll introduce a trampoline call that initializes a table and initiates the recursion:

LLCS(A, n, B, m):

let Table[0..n][0..m] be a 2-dimensional array

initialize all elements of Table to null

Helper(Table, A, B, n, m)

Helper(T, A, B, n, m):

// As always with memoization, we wrap the recurrence with a check

// to see if the table already contains the answer. If not, compute

// the answer via the recurrence and store it. If so, just return.

if T[n][m] is null:

if n = 0 or m = 0:

T[n][m] = 0

2



else:

T[n][m] = max(Helper(T,A,B,n-1,m),

Helper(T,A,B,n,m-1),

if A[n] = B[m] then 1+Helper(T,A,B,n-1,m-1) else 0)

reurn T[n][m]

8. Complete the following table to �nd the length of the LCS of tycoon and country using your mem-

oized solution:

SOLUTION: Inline below. . .

c o u n t r y

0 0 0 0 0 0 0 0

t 0 0 0 0 0 1 1 1

y 0 0 0 0 0 1 1 2

c 0 1 1 1 1 1 1 2

o 0 1 2 2 2 2 2 2

o 0 1 2 2 2 2 2 2

n 0 1 2 2 3 3 3 3

9. Go back to the table and extract the actual LCS from it. Circle each entry of the table you have to

inspect in constructing the LCS. Then, use the space below to write an algorithm that extracts the

actual LCS from an LLCS table.

SOLUTION:We've italicized the entries used above. (In fact, we could equivalently have gone some

slightly di�erent routes around the �ou� in �country� and the �oo� in �tycoon�.) Critically, the table

tells us the value of the recurrence at each cell, and the recurrence tells us which cell we need next

to reconstruct more of the solution. Our understanding of the recurrence tells us that when it adds

one to the length, that's because we've found one letter of the LCS itself. Otherwise, the LCS at the

next cell is the same as the LCS at the current one.

Our algorithm is inline below. . .

// Note: len(A) = n, len(B) = m, and Table is a filled-in

// (n+1)x(m+1) LLCS memoization table for A and B

ExplainLCS(A, B, Table):

if len(A) = 0 or len(B) = 0: // recurrence's base case

return "" // so the LCS is the empty string

else:

value = Table[n][m] // the value computed by the recurrence

// which recursive call yielded the max?

if value = Table[n-1][m]:

return ExplainLCS(A[1..n-1], B, Table)

else if value = Table[n][m-1]:

return ExplainLCS(A, B[1..m-1], Table)

else:

// The final letters matched. So, we actually need to add a letter to the LCS.

return ExplainLCS(A[1..n-1], B[1..m-1], Table) + A[n]

10. Give a dynamic programming solution that produces the same table as the memoized solution.

3



SOLUTION: We need to �nd an order to traverse the table such that by the time we require the

value of any table cell, it has already been calculated. There are many working orders, but we'll �ll

in the table column by column, from top to bottom.

LLCS(A, n, B, m):

let Table[0..n][0..m] be a 2-dimensional array

initialize all elements of Table to null

// Fill in the base cases

for i = 0 to n: Table[i][0] = 0

for i = 0 to m: Table[0][i] = 0

// Fill in the recursive cases column-by-column, top-to-bottom

for i = 1 to n:

for j = 1 to m:

Table[i][j] = max(Table[i-1][j],

Table[i][j-1],

if A[n] = B[m] then 1+Table[i-1][j-1] else 0)

return Table[n][m]

11. Analyse the e�ciency of your memoized, DP, and �explain� algorithms in terms of runtime and

(additional, beyond the parameters) memory use. You may assume the strings are of length n and

m, where n ≤ m (without loss of generality).

SOLUTION: Both the memoized and DP solutions �ll out each cell of the table exactly once. How

long does it take to �ll out that cell? Not counting recursive calls (for the memoized solution), �lling

out a table cell takes constant time: the max over three simple expressions. There are n ∗ m table

cells.

Therefore, both versions take O(nm) time.

Assuming each table entry takes constant space, both versions also take O(nm) space. (The memoized

version uses additional space for the call stack, but the deepest the call stack gets is O(n+m), which
is dominated by the table size.)

The �explain� algorithm stops as soon as it reaches a base case, which takes at most O(n+m) steps.
It never takes a �wrong� turn, and so this is also its runtime. (It uses only constant space beyond the

already-stored table, but it does critically rely on that table, as we've currently designed it.)

12. If we only want the length of the LCS of A and B with lengths n and m, where n ≤ m, explain how

we can �get away� with using only O(n) memory in the dynamic programming solution.

SOLUTION: As in our previous dynamic programming problem, we can store only a constant

number of entries along one dimension of the table. In this case, each cell requires the entries above,

to the left of, and diagonally above and to the left of itself. Given the traversal order we chose for

our DP algorithm above, we can store just one old �column� of the table (one space left of the current

column). The recurrence never requires looking further back than that.

At any time, then, we'll have two columns in memory: the current and previous ones. Each column

has n+ 1 entries, for O(n) memory.

4


