
Lowest-Cost (Not So) Simple Path

November 11, 2016

Imagine a weighted, directed graph G where edge weights may be positive, negative, or zero. We will

consider the problem of �nding the lowest-cost simple path between a source node s and terminal node t in
such a graph. We'll call this problem GENSHORT for �general shortest path�. (Recall that a simple path

is a path with no vertex repeated, i.e., with no cycles.)

(Recall that the Bellman-Ford Algorithm�as presented in our text��nds the shortest path from any

start vertex in the graph to a single terminal vertex t. It proceeds using dynamic programming using a

table parameterized by which node is being considered as s and the maximum number of edges in the path

from s to t. The �rst column (where the maximum number of edges is 0) has ∞ for all nodes except t itself
and 0 for t. On each iteration, it updates each row s in the next column based on the lowest-cost path of

all those that go from s to some node u (in one edge) and then from u to t using the already-computed

value in the previous column.)

1. Very brie�y explain why the Bellman-Ford algorithm cannot in general be used to solve GEN-

SHORT.

2. Give a small instance of GENSHORT on which the Bellman-Ford algorithm will �nd the lowest-cost

simple path from s to t. Be sure to indicate what that lowest-cost simple path is.

3. Here is a proposed reduction from GENSHORT to the problem of �nding the lowest-cost simple path

between a source node s and terminal node t in a weighted, directed graph with only non-negative

edge weights:

Reduction: Given the graph G that may contain negative edge weights, �nd the edge with minimum

weight wmin (by scanning through all edges) and subtract wmin from the weight of every edge to create

graph G′. In G′ the minimum weight edge has weight 0, and no edge has negative weight. Find the

lowest-cost simple path between s and t in G′ (i.e., call on the solution to the underlying problem),

and then return this list of vertices as the lowest-cost simple path in the original graph. (Of course,

the edges connecting the vertices have di�erent weights in G, but it's still the same path.)

Give a small instance of GENSHORT on which this reduction does not produce the optimal solution.

Indicate the solution produced by the reduction and the optimal solution.

1 NP-Completeness

In this part, we will consider a decision-variant of GENSHORT. In this variant, we add a number k to the

format of an instance. The solution to the instance is YES if a simple path from s to t exists with cost less

than or equal to k; otherwise, the solution is NO.

1. Prove�by reducing from the HAMPATH problem to GENSHORT�that GENSHORT is NP-hard.

(Note: HAMPATH is NP-complete.) Hint: it may help to add a couple of nodes to be s and t. When

thinking about edges to and from those nodes, consider that you can have zero-weight edges.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


2. Prove that the decision version of GENSHORT is in NP by showing it is �e�ciently certi�able�.

First, select a certi�cate. (Think of how you would describe the solution to the original version

of GENSHORT.) Then, show how to prove in time polynomial in the size of the decision-variant

GENSHORT instance that the answer to the decision problem is YES given such a certi�cate. (A

decision-variant GENSHORT instance is a graph plus one extra number; think of its size as O(n+m)
as usual for graphs.)

(This isn't required, but you might want to work through how you could solve the original variant of

GENSHORT using a polynomial number of calls to the decision-variant.)

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	NP-Completeness

