Lowest-Cost (Not So) Simple Path

November 11, 2016

Imagine a weighted, directed graph G where edge weights may be positive, negative, or zero. We will
consider the problem of finding the lowest-cost simple path between a source node s and terminal node ¢ in
such a graph. We'll call this problem GENSHORT for “general shortest path”. (Recall that a simple path
is a path with no vertex repeated, i.e., with no cycles.)

(Recall that the Bellman-Ford Algorithm—as presented in our text—finds the shortest path from any
start vertex in the graph to a single terminal vertex ¢. It proceeds using dynamic programming using a
table parameterized by which node is being considered as s and the maximum number of edges in the path
from s to t. The first column (where the maximum number of edges is 0) has oo for all nodes except t itself
and 0 for ¢t. On each iteration, it updates each row s in the next column based on the lowest-cost path of
all those that go from s to some node u (in one edge) and then from u to ¢ using the already-computed
value in the previous column.)

1. Very briefly explain why the Bellman-Ford algorithm cannot in general be used to solve GEN-
SHORT.

2. Give a small instance of GENSHORT on which the Bellman-Ford algorithm will find the lowest-cost
simple path from s to ¢t. Be sure to indicate what that lowest-cost simple path is.

3. Here is a proposed reduction from GENSHORT to the problem of finding the lowest-cost simple path
between a source node s and terminal node ¢ in a weighted, directed graph with only non-negative
edge weights:

Reduction: Given the graph GG that may contain negative edge weights, find the edge with minimum
weight Wi, (by scanning through all edges) and subtract w,,;, from the weight of every edge to create
graph G’. In G’ the minimum weight edge has weight 0, and no edge has negative weight. Find the
lowest-cost simple path between s and ¢ in G’ (i.e., call on the solution to the underlying problem),
and then return this list of vertices as the lowest-cost simple path in the original graph. (Of course,
the edges connecting the vertices have different weights in G, but it’s still the same path.)

Give a small instance of GENSHORT on which this reduction does not produce the optimal solution.
Indicate the solution produced by the reduction and the optimal solution.

1 NP-Completeness

In this part, we will consider a decision-variant of GENSHORT. In this variant, we add a number k to the
format of an instance. The solution to the instance is YES if a simple path from s to t exists with cost less
than or equal to k; otherwise, the solution is NO.

1. Prove—by reducing from the HAMPATH problem to GENSHORT—that GENSHORT is NP-hard.
(Note: HAMPATH is NP-complete.) Hint: it may help to add a couple of nodes to be s and t. When
thinking about edges to and from those nodes, consider that you can have zero-weight edges.

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.


http://creativecommons.org/licenses/by/4.0/

2. Prove that the decision version of GENSHORT is in NP by showing it is “efficiently certifiable”.
First, select a certificate. (Think of how you would describe the solution to the original version
of GENSHORT.) Then, show how to prove in time polynomial in the size of the decision-variant
GENSHORT instance that the answer to the decision problem is YES given such a certificate. (A
decision-variant GENSHORT instance is a graph plus one extra number; think of its size as O(n+m)
as usual for graphs.)

(This isn’t required, but you might want to work through how you could solve the original variant of
GENSHORT using a polynomial number of calls to the decision-variant.)

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.


http://creativecommons.org/licenses/by/4.0/

	NP-Completeness

