Little-o and Little- ω

January 12, 2015

Big O, Θ , and Ω are **roughly** equivalent to asymptotic \leq , =, and \geq comparisons on functions. That naturally leaves analogues of < and > to define.

1 Formal Definitions via Logic

A function f(n) is little-*o* of another function g(n)—i.e., $f(n) \in o(g(n))$ —exactly when: for all positive real numbers *c*, there is a positive integer n_0 such that for all $n \ge n_0$, $f(n) \le c \cdot g(n)$.

That's a lot like the big-O definition, except that c is not a constant. For every possible scaling factor (including very small ones like $\frac{1}{10000}$), once n is large enough, g(n) is still bigger than f(n).

Little- ω is exactly the converse definition. For our purposes, $f(n) \in \omega(g(n))$ exactly when $g(n) \in o(f(n))$.

2 Formal Definitions via Limits

A very handy tool is to compare the ratios of two functions: $\frac{f(n)}{g(n)}$. This can tell you quite a bit about how they compare asymptotically.

In particular:

- 1. If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$, then $g(n) \in o(f(n))$ and $f(n) \in \omega(g(n))$.
- 2. If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$, then $f(n) \in o(g(n))$ and $g(n) \in \omega(f(n))$. (Notice that this just means $\lim_{n\to\infty} \frac{g(n)}{f(n)} = \infty$.)
- 3. If $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$ for some constant real number 0 < c, then $f(n) \in \Theta(g(n))$ (and so $g(n) \in \Theta(f(n))$).

It turns out we can prove that the limit definitions are equivalent to the logical definitions above (since limits also have quantifier-based definitions!). With a bit of calculus (remind yourself of "L'Hôpital's Rule"), using the limits technique is often **much** easier than using the logical definitions.

Try these out to compare: n + 3, 3n, $n^2 - 1$, and 2^n .

3 Little-*o* is Not Really Big-*O* But Not Θ

Consider the function $n|\sin n|$. Because $|\sin n|$ oscillates between 0 and 1, $n|\sin n|$ oscillates between 0 and n. If we compare that to n asymptotically, we find that $n|\sin n| \in O(n)$ (with the constant scaling factor c = 1, in fact!) but $n|\sin n| \notin \Theta(n)$ and $n|\sin n| \notin o(n)$. (In the case of the limit, the ratio of these two functions is just $|\sin n|$ which oscillates between 0 and 1 and so does not approach either value or anything in between!) So our analogy to $<, \leq, =, \geq$, and > is useful but not exact.