CPSC 320 Notes, Asymptotic Analysis

January 12, 2015

1 Comparing Orders of Growth for Functions

For each of the functions below, give the best ©® bound you can find and then arrange these functions by
increasing order of growth. (Some of the later ones are especially tricky!)

2" n + n?
1.5nlgn 55n + 4
Inn n!

(n+1)! (nlgn)(n+1)
2nlog(n?) 1.6*"

vn
logn \/ﬁ

2 Functions/Orders of Growth for Code

Give good O bounds on the worst-case running time of each of these pseudocode snippets dealing with an
array A of length n:
Finding the maximum in a list:

Let max = -infinity
For each element a in A:
If max < a:
Set max to a
Return max

“Median-of-three” computation:

Let first = A[1]
Let last = A[length of A]
Let middle = A[floor((length of A4)/2)]

If first < last And first < middle:
return first

Else If middle < first And middle < last:
return middle

Else
return last

Counting inversions:



Let inversions = 0
For each index i from 1 to length of A:
For each index j from (i+1) to length of A:
If alil > aljl:
Increment inversions
Return inversions

3 Progress Measures for While Loops

Assume that FindNeighboringInversion(A) consumes an array A and returns an index i such that A[i]
> A[i+1] or returns -1 if no such inversion exists. Let’s work out a bound on the number of iterations of
the loop below in terms of n, the length of the array A.

Let index = FindNeighboringInversion(4)
While index > O:
Swap A[i] and A[i+1]
Set index to FindNeighboringInversion(A)
1. First, prove that if an array has an inversion (two legal array indices i and j such that ¢ > j but

Ali] < Alj]), then it has a neighboring inversion (an inversion in which the second index is one greater
than the first).

2. Prove that the swap in the loop removes an inversion but does not introduce an inversion.

3. Give a “measure of progress” for each iteration of the loop in terms of inversions.

4. Give an upper-bound on the number of possible inversions in the array.

5. Give an upper-bound on the number of steps the loop could take.

6. Prove that this algorithm sorts the array A.

4 Challenge Problem

Imagine that rather than FindNeighboringInversion, we’d used FindInversion, which returns two ar-
bitrary indices (i, j) such that i < j but A[i] > A[j] and then in our loop swapped A[i] and A[j].
Could the loop run forever? If it terminates, would the array be sorted? Can you upper- and lower-bound
the loop’s runtime?



	Comparing Orders of Growth for Functions
	Functions/Orders of Growth for Code
	Progress Measures for While Loops
	Challenge Problem

