
CPSC 320 Notes, Asymptotic Analysis

January 12, 2015

1 Comparing Orders of Growth for Functions

For each of the functions below, give the best Θ bound you can �nd and then arrange these functions by

increasing order of growth. (Some of the later ones are especially tricky!)

2n n + n2

1.5n lg n 55n + 4
lnn n!
(n + 1)! (n lg n)(n + 1)
2n log(n2) 1.62n

n
logn

√
n
√
n

2 Functions/Orders of Growth for Code

Give good Θ bounds on the worst-case running time of each of these pseudocode snippets dealing with an

array A of length n:
Finding the maximum in a list:

Let max = -infinity

For each element a in A:

If max < a:

Set max to a

Return max

�Median-of-three� computation:

Let first = A[1]

Let last = A[length of A]

Let middle = A[floor((length of A)/2)]

If first < last And first < middle:

return first

Else If middle < first And middle < last:

return middle

Else

return last

Counting inversions:

1



Let inversions = 0

For each index i from 1 to length of A:

For each index j from (i+1) to length of A:

If a[i] > a[j]:

Increment inversions

Return inversions

3 Progress Measures for While Loops

Assume that FindNeighboringInversion(A) consumes an array A and returns an index i such that A[i]

> A[i+1] or returns -1 if no such inversion exists. Let's work out a bound on the number of iterations of

the loop below in terms of n, the length of the array A.

Let index = FindNeighboringInversion(A)

While index > 0:

Swap A[i] and A[i+1]

Set index to FindNeighboringInversion(A)

1. First, prove that if an array has an inversion (two legal array indices i and j such that i > j but

A[i] < A[j]), then it has a neighboring inversion (an inversion in which the second index is one greater

than the �rst).

2. Prove that the swap in the loop removes an inversion but does not introduce an inversion.

3. Give a �measure of progress� for each iteration of the loop in terms of inversions.

4. Give an upper-bound on the number of possible inversions in the array.

5. Give an upper-bound on the number of steps the loop could take.

6. Prove that this algorithm sorts the array A.

4 Challenge Problem

Imagine that rather than FindNeighboringInversion, we'd used FindInversion, which returns two ar-

bitrary indices (i, j) such that i < j but A[i] > A[j] and then in our loop swapped A[i] and A[j].

Could the loop run forever? If it terminates, would the array be sorted? Can you upper- and lower-bound

the loop's runtime?

2


	Comparing Orders of Growth for Functions
	Functions/Orders of Growth for Code
	Progress Measures for While Loops
	Challenge Problem

