
CPSC 320 Assignment #2

January 12, 2015

Due date: Monday, 2015/01/19 at 5PM
Staple your solution behind the CPSC 320 cover page and submit in our

handin box.

We will mark at least one part of each of the 4 problems.

Problems 1�3 ask about this algorithm from the previous assignment for

determining whether an array of numbers contains two identical numbers

(duplicates or �dups�):

HAS_DUPS(array):

For each index i from 1 to the length of the array:

For each index j from (i+1) to the length of the array:

If array[i] is equal to array[j]:

Halt and return true

Halt and return false

1. We could describe the running time of HAS_DUPS in the worst case

(when the array contains no duplicates) as T (n) =
∑n

i=1

∑n
j=i+1 1.

(a) Simplify this sum to a polynomial (i.e., a sum of terms each of the

form c · nk, where each c and k are constants and no two terms

have the same values of k). Show your work!

(b) Prove using the de�nition of Θ (either the limit-based de�nition

or the logical de�nition in the textbook) that the polynomial you

found is in Θ(n2).

(c) Imagine we implemented the �array� using a linked list instead.

Each computation of the length n of the �array� then takes Θ(n)
time, and accessing element array[i] requires Θ(i) time. Give

and brie�y justify a good Θ-bound on the performance of the

algorithm in this case.

1



2. A better solution would be to sort the array �rst and then check for

duplicates. This is, e�ectively, a reduction to sorting, where the �rst

algorithm in the reduction is trivial (the instance of the duplicate-

checking problem is the same as the instance of the sorting problem)

and checking for duplicates is part of the second algorithm in the re-

duction.

(a) Give an e�cient second algorithm for the reduction to convert a

sorted array (solution to an instance of the sorting problem) into

a boolean indicating whether there are duplicates (solution to an

instance of the duplicate-checking problem).

(b) Give and brie�y justify a good Θ-bound on the worst-case run-

time of your algorithm.

(c) Name two fast sorts you could use to solve the sorting problem.

(d) Give and brie�y justify a good Θ-bound on the worst-case run-

time of a solution to this problem using your reduction and a fast

sorting algorithm of your choice.

3. An even better solution might be to use a hash table.

(a) Write out an e�cient algorithm for checking for duplicates in a

list of numbers assuming you have available an initially empty

hash table H supporting the operations INSERT(H, key, value),

FIND(H, key), and CONTAINS?(H, key), all of which run in ex-

pected Θ(1) time.

(b) Give and brie�y justify bounds on the expected performance

of your algorithm from the previous part for an input without

duplicates.

(c) Give and brie�y justify bounds on the expected memory usage

of your algorithm for an input without duplicates. (For memory

usage, ignore the memory used by the instance and count only

memory used by your code.)

4. Consider the following algorithm that takes n as an input:

While n > 2:

If n is prime:

Decrement n

Let f be the smallest prime factor of n

Set n to (n / f)

2



(a) Give and brie�y justify a good O-bound on the number of iter-

ations of the loop in terms of n. Hint: �nd a particular type of

number that is easy to analyze and brie�y argue that no other

type of number could take any more time asymptotically.

(b) BONUS (not required, might be worth a small amount of bonus

points, will not generally receive much partial credit for wrong

answers): Give and brie�y justify a good Ω-bound on the number

of iterations of the loop in terms of n.

3


