
CPSC 320 Notes: Physics, Tug-o-War, and Divide-and-Conquer

February 10, 2015

In tug-o-war, two teams face each other and carefully pull on a well-selected rope (to avoid injury).
The team that pulls the other past the centerline wins.

1 Algorithmic Tug-o-War

1. Given 2n people, you decide make these two tug-o-war teams {heaviest, 3rd heaviest, 5th heaviest,
. . . } and {2nd heaviest, 4th heaviest, 6th heaviest, . . . } using this algorithm: �While people remain,
scan the line of people for the heaviest and move that person into Team A then scan the line for the
heaviest (remaining) and move that person onto Team B.�

Give a good asymptotic bound on the runtime of this algorithm.

2. Give a more e�cient algorithm and analyse its asymptotic runtime.

3. Now imagine you are analysing weight measurements and want to �nd the median (the dn2 e-th largest).

(a) Modify the �rst algorithm above to solve this problem and give a good asymptotic bound on its
runtime.

(b) Modify your algorithm above to solve this problem and give a good asymptotic bound on its
runtime.

1



2 Analysing QuickSort

Remember the QuickSort algorithm:

// Note: for simplicity, we assume all elements of A are unique

QuickSort(list A):

If length of A is greater than 1:

Select a pivot element p from A

Let Lesser = all elements from A less than p

Let Greater = all elements from A less than p

Let LesserSorted = QuickSort(Lesser)

Let GreaterSorted = QuickSort(Greater)

Return the concatenation of LesserSorted, [p], and GreaterSorted

Else:

Return A

1. Assuming that QuickSort somehow always selects the dn4 e-th largest element as its pivot, give a
recurrence relation for the runtime of QuickSort.

2. Draw a recursion tree for QuickSort labeled by the amount of time taken by each recursive call and
the total time for each �level� of calls, both in terms of the list's length n. (For simplicity, ignore
ceilings, �oors, and the e�ect of the removal of the pivot element on the list sizes in recursive calls.)

2



3. Find:

(a) the number of levels in the tree up to the shallowest leaf (base case), and

(b) the number of levels in the tree up to the deepest leaf.

4. Use these to asymptotically upper- and lower-bound the solution to your recurrence. (Note: if, on
average, QuickSort takes two pivot selections to �nd a pivot at least this good, then your upper-bound
also upper-bounds QuickSort's average-case performance.)

5. Draw the speci�c recursion tree generated by QuickSort([6, 2, 3, 7, 9, 1, 8, 4, 5]). Assume
QuickSort: (1) selects the �rst element as pivot and (2) maintains elements' relative order when
producing Lesser and Greater.

3



3 Tug-o-War Winner (for Median)

1. Circle only those branches in your speci�c recursion tree in which the median appears.

2. How could you determine before making QuickSort's recursive calls whether the median is the pivot
or appears in the left or right branch?

3. Modify QuickSort to make it a median-�nding algorithm. (Oddly enough, you'll want to make it do
more than only �nd medians.)

4. Give a good asymptotic bound on the average-case runtime of your algorithm by summing the runtime
of only the 3n

4 branches of your abstract recursion tree.

4 Challenge

Note: assume all elements are unique for the �rst two problems below.

1. Compare the average-case performance of your QuickSelect algorithm above against the performance
of one that picks a random pivot (rather than using the �rst element).

2. Explain how this statement can possibly make sense for the random-pivot version of QuickSelect:
�There is no di�erence between the best- and worst-case performance of this algorithm.� Note: we
instead use �expected performance� to describe this scenario.

3. Which one is better and why: good average-case performance or good expected performance?

4. Compare the actual (not asymptotic) number of comparisons made by the standard algorithm for
�nding the largest element of a list and QuickSelect used to do the same, assuming QuickSelect

always �gets lucky� and picks the median of what remains as its pivot. P.S. Don't look here until
after class, but more about the physics of tug-o-war and the reason for all the cautionary notes at the
start are at what-if.xkcd.com/127.

4

http://what-if.xkcd.com/127/

	Algorithmic Tug-o-War
	Analysing QuickSort
	Tug-o-War Winner (for Median)
	Challenge

