CPSC 320 2014W2 Midterm 1 Practice Problem Worked Sol'ns

February 1, 2015
11:32 AM

CPSC 320 Midterm #1 (Screencast Edition)

February 1, 2015

Reminders:

o Sy =" or e 0,

. Z}:=1 = w, for & = (.

For a recurrence like T(n) = aT'(3) + f(n), where a = 1 and b = 1, the Master Theorem states three

Ccases:

L If f(n) € O(n°) where ¢ < log, a then T'(n) € Q(n'# @)
2. If for some constant k = 0, f(n) € B(n"{logn)*) where ¢ = log, a, then T'(n) € S(n"(log n)*+1).

3. 0F f(n) € Q(n") where ¢ = log, o and af(3) < kfn) for some constant k< 1 and sufficiently large
n, then T(n) € O(f(n)).

S} e Ogln)) (big-0, that is) exactly when there is a positive real constant ¢ and positive integer
ny such that for all integers i = ny, f(n) < c- g(n).

fln) € olgin)) (little-o, that is) exactly when for all positive real constants ¢, there is a positive
imteger ny such that for all integers n = ng, fin) < c-g{n).

fln) € Q{g(n)) exactly when gl(n) € O(f(n)).

fin) € wlgln)) exactly when g(n) € o f(n)).

fln) € B(gn)) exactly when g{n) € O f(n)) and f(n) € Qg(n)).

These problems are meant to be generally representative of our midterm exam problems and—in some

cases—may be very similar in form or content to the real exam. However, this is not a real exam.
Therefore, vou should not expeet that it will fit the predicted exam timeframe or that the questions will
be of the appropriate level of specificity or difficulty for an exam. (That is: the real exam may be shorter
or longer and more or less vague!)

All of that said, you would benefit tremendously from working hard on this practice exam!

Screencasts Page 1

1 Vain-y Dividi Vici

Consider the following recursive algorithm called on an array of integers n Note: in this particular
problem, it is not relevant, but generally if we refer to “fourths” of an ars 1 length n that is not
n

divisible by 4, the “fourths” of & won't be exactly length . but cach will have length either fﬂ] or | §].
Typically, this has no effect on the asymptotic analysis.)

CEDI(A): D/ é
(lf the length of A is odd OR half of the length of A is odd:
Return the first element of A

lse:
\ﬁ Note: If we reach here, the length of A is divisible by 4
Let Al be the 1st fourth of A, ¥
42 be the 2nd fourth of A, 4 O()’)
A3 be the 3rd fourth of A, and ¥
A4 be the 4th fourth of A. @
< Return CEDI(A2) + CEDI(A4)
"‘"\.a—-e

any recursive _case(s) and base case(s) and what conditions on the input identify them. To clarify,
we've started a solution below, but vou will need more than the case we have started.

o g DUt

I 1. Give a recurrence 1'(n) describing the runtime of this algorithim, Be careful to clearly specify both

Screencasts Page 2

Repeated from problem intro:

CEDI(A):
If the length of A is odd OR half of the length of A is odd:
' Return the first element of A
Else:
Note: If we reach here, the length of A is divisible by 4
Let A1l be the 1st fourth of A,
A2 be the 2nd fourth of A,
A3 be the 3rd fourth of A, and
A4 be the 4th fourth of A.
Return CEDI(AZ) + CEDI(A4)

 Sound, o worst .!I-]-Jl’f."f.'c',.'f.’llf.h.‘."E’,'.i.f,f.'-gé.’:féll'ff,.il' il STy vour e
Once e pek o problom g%
‘L‘L\L run+ w1 xed
No C’MAM) best- ot word-cast
oAt e

Screencasts Page 3

Repeated from problem intro:

CEDI(A):

If the length of A is odd OR half of the length of A is odd:
m_g Return the first element of A

lse:

Note: If we reach here, the length of A is divisible by 4
Let A1l be the 1st fourth of A,

A2 be the 2nd fourth of A,

A3 be the 3rd fourth of A, and

A4 be the 4th fourth of A.
Return CEDI(A2) + CEDI(A4)

—~—~—
3. Give and briefly justifv a good (:-bound on the runtime of this algorithm in terms of n.
G

\
(<;W>‘a/ mf«v ap [Q/tg“ui "'ﬂL

JJ\}.GLU 'Lﬁ l’i, He rowhiat CM/“M{[’

Screencasts Page 4

=)=

~ P e ST
<3
-—<
S
‘\J

Repeated from problem intro:

n

CEDI(A): —_—
(If the length of A is odd DR half of the length of A is odd: L{ K
Return the first element of A
f Else:

Note: If we reach here, the length of A is divisible by 4
Let A1l be the 1st fourth of A, M <
—~? A2 be the 2nd fourth of A,

A3 be the 3rd fourth of A, and

A4 be the 4th fourth of A. [OV[EN /Sq ‘:—k

Return CEDI(AZ) + CEDI(A4)
—

— =2 k
4. Draw a recursion tree for CEDI(A) labeled by the amount of time taken by cach recursive call to CEDI
and the total time for cach “level” of calls, both in terms of » for an arbitrary value of n that is a

power of 4 greater than 1 (i.c. n — 4" for k il/‘L @YQAHi «
n
s @ 2
O

=

K

-—

o4 2= .
{w)) 277G yL*n/"i
Weoo & - 0% Z '-1) f)

3. Give and briefly justily— based on vour tree—a good O-bound on the runtime of this algorithm in

e ({:) The plg roms wo o

stontr o n ast Y

Screencasts Page 5

Repeated from problem intro:

CEDI(A):
If the length of A is odd OR half of the length of A is odd:
Return the first element of A
Else:
Note: If we reach here, the length of A is divisible by 4
Let A1l be the 1st fourth of A,
A2 be the 2nd fourth of A,
A3 be the 3rd fourth of A, and
A4 be the 4th fourth of A.
Return CEDI(AZ) + CEDI(A4)

6. Briefly explain why vour bound from the previous part is not a ©-bound.

Rl lhe 0% ¥ ﬁ SR
Qr‘ n ol o mJ‘[’o/;b o 1—{‘

—

7. Bricfly explain why we cannot use the Master Theorem to give a ©-bound on the runtime of this
algorithm.

_r\,\w* MD {J\L/ L\LS an nbnde # 6{‘

bose co#S.

Screencasts Page 6

Repeated from problem intro:

J(/
CEDI(A): (%
If the length of A is odd OR half of the length of A is odd: 3,/,[
Return the first element of A 80*
Else: A

Note: If we reach here, the length of A is divisible by 4
Let A1l be the 1st fourth of A,
A2 be the 2nd fourth of A, TCV\)
A3 be the 3rd fourth of A, and
A4 be the 4th fourth of A.
Return CEDI(A2) + CEDI(A4)

i

ZTCDY G n by 4
{L - 0Htuwig,

8. If we consider only values of n that are powers of 4, we can apply the Master Theorem. Indicate the
key parameters of the Master Theorem in this case and use it to re-justifv vour O-hound.

We are wn Cave 1_ ble g&)éwo)
and O < log,2> L

Thuspve heve O (i‘\ 1031,0) 11‘0(’[(/1’):
O (7)

\

Screencasts Page 7

2 Easy as ©ne, Two, Threc (or not)

For cach of the following code snippets, give and briefly justify good ©-bounds on their runtime in terms

of n.
Notes: 27n below means 2",

L
Let count = 0 — 0(’)

For i = 1 -> n:"—:I
ﬂ.) i®i
e

TP PYa

— O or

For j = i:
—

% Increr®nt count
Output "Whee! Going down.."

Kt\lhile count > O
—_——

Decrement count

L*ou)

50y

Screencasts Page 8

PR ST 13

OC)

j covnt Feraisy,, @écr-m{‘ e
R)

8

n

Repeated from the problem intro: For cach of the following code snippets, give and briefly justify good

B-bounds on their runtime in terms of n. .) Jr 2 EQ
Let count = O 00) ﬁ <5 m (’L z -2 _ W
For i_=.1 -> n: [\ r g \ - L o
l“\) If i*i < n: 0O rRRS é’ " é
\&, @V‘ “Forj '.noi«i:/DC \ L=l gt v p

Increment count
Output "Whee! Going down.." 0 L‘l) _ L 3
While count=count > O:
[€D \ @((/K) J
;

Decrement count S‘

A @ (/w\/"‘A\ e =R
L) 2

Ouyw/‘ @ ZV\%”>

Screencasts Page 9

Repeated from the problem intro: For cach of the following code snippets, give and briefly justify good
S-bounds on their runtime in terms of n.
Notes: 27n below means 2,

‘ Given: An array A of length n of integers

Let minDiff = infinity dt‘}
For i = 0 -» @2°n - 1):
Let inSum = 0 @ (<Y
Let outSum = 0 O (+) n ;
For j =0 -> (n - 1): Z' —
If the j’th bit of i is 1: ,,L k\é L Li.nf;s
Increase inSum by A[j] 0(}) VL ¢ u\s
Else:
Increase outSum by A[j]
Let thisDiff = |inSun - outSuz| & C\
If thisDiff < minDiff:
minDiff = thisDiff \5 (/\)

Return minDiff 0 (,’.)

C?_n«[n=l l)

/.—/
n -

10

Screencasts Page 10

3 Marriage Counselling

In this problem, we consider the Gale-Shapley algorithm with men proposing. For each statement, cirele

one answer to indicate whether the statement is always true, ffever tric, or sometimes true (i.c., true
for some instances but not for others).

Note: in some cases we restrict attention to just certain types of instances, in which case we're asking
whether the statement is always, never, or sometimes true for instances of that type.

1. Two men both propose to n women. nl_ ! N{ l’b)(% \\.\ U\\l@
-—_—

always true

never true sometimes true

2. For any instance in which two men wp and me both most prefer one woman w, the ordering of m;’s
and my's proposals determines whether vy or e marries w.

¢ o/
/ z(——
. 'I 2 2 4)
always true sometimes true - -

M1 w, - M lw ‘_%w ' m

T , ! Lo ",lev, W,
M W .- e L, l
Yt omy, g T Wa t m
3. Every woman marries her most |Jrl'i'c-['rc'ihu'rlu. e -~ -=

M? L W; .— v, s M's _——
4 1
\/ always true never troe !

L. Some man marries his most preferred womarn.

\/ always truc never truc

sometimes ~— —
R ‘/‘13 f"lz_ /7(
< re ~ n
! 3 %
3. For any instance in which two women wy and ws both most prefer one man m, one of @i)
Ties L
\arrics . m(: —_— LJ‘:MI 3 V‘V(’ 1\1L ”13
m;! — w M
Hl\v\'ilyﬁ true never true '
! !
/"[rw,_\ w M;_“

Screencasts Page 11

4 Demi-Glace

The minimum spanning tree problem becomes somewhat strange in the presence of negative edge weights.
Imagine, for example, that you are a telecommunications company creating
connecting particular citie

a communications network by
with fiber-optic cable. You want to ensure that all cities are connected by some
path (i.c., that vou've created a spanning tree). There is a cost to laying the cable, but some pairs of cities

are also willing to pay vou to do the job; so, the net cost of a particular connection may be positive, zero,
or even negative

It will be handy for this problem to define a “spanning subgraph” rather than a “spanning tree”.

For a graph = (V. F}, a spanning subgraph is a graph &' = (V. E"), where V' =V, £' C E, and ('
is connected (the “spanning” part).

auueeles :

A “minimum spanning subgraph” would then be the spanning subgraph of a graph whose total edge
weight is smallest —_—

1. Prove that for non-negative edge weights, the minimum spanning tree of a graph is a minimum
spanning subgraph,

(D An MST s & Spewmng Svbsmh bl

s verbac are ol ks of &
& ot G svbeb of g‘;/
4 8 CD‘»M-LQL“(.

[

Th s min emeg SS. b

Speawming svhsrple ol embam « e
m/os% St msT 5% ble edyps bhave nom

Screencasts Page 12

e

wesht, o 2

7 gcort ¥ SS.,

Repeated from the problem intro: For a graph G = (V. E), a spanning subgraph is a graph &'
(VI ET), where V' =V, K" C E, and ' is connected (the “spanning™ part).

A “minimum spanning subgraph”™ would then be the spanning subgraph of a graph whose total edge
weight is smallest

2. Give an efficient, correct reduction from the problem of finding a minimum spanning subgraph in a
weighted undirected graph = (V. E) with real-valued (and possibly negative) edge weights to the
minimum spanning tree problem on a graph with non-negative real edge weights.

Hint: think about “edge contractions”. (Never heard of them? Look them up!)

A (—ONTMOY ALl M6G
E0Ces 1w g Daktit
LA REEIC c/sééfg WHEN U6
“ RESULT HAS S | €bke B

OVé PAR OF wWoless.
OaMoIN Te soL'N uu/rué SET

A : OF ALL NE&6 we:mrea GAes.
@(Mué() A= G5 7
.) 9,

3. Give and bricl 1u».1 ify a good 6-bouw tour reduction’s worst-case runtime in terms of the nunbr

of nodes |V] and\dpes |E]. Asser© the mput is in the form of an adjacency list. Describe any other
data structures (etail\ npeSsary to justify the bound.

A & Mo ~EuDd bS 72
), b cuwmc;)ALL peg weed?
I ‘ e

g"! \V s/WH‘fl ~{w606 Né cosY

' s NewW ABT 1T R CROVIS OF V&ATS. @CIV{L)
N b i ?u‘w(/Mswieg Siir MG

L WITH €N ' il A
== ([Vﬁ 13 CRoVI 4 OUeNwrire monk VV/’e;v/szfé 6146,

()3 0-70 @Mv o cmenzl% %%g{RACK oF SRS varTs -
m&mwl@(w + elu(;w))]

{. Prove that vour reduction—paired with an optimal solution to the MST problemn—is optimal.

A) . ContRAcs ALL wWEE wéshT enges:

DEL6YE 1 ICHER (WEKHT EOEE Louené
>l 6866 NME) cowengs

Al (O No MSs CAn eave ouv vy weg
WELUTED €nc6.
ASSVME For coymmA THAT S PP,

THEN WE can/ 4ob 1T RACHL .
THE RESVLT 18 4TIt R SC o (Y chcolie

Screencasts Page 13

ASSVUME Co commA THAT B PDes.
THEN WE can/ A0b 1T RACIL i .

THE RESVLT 1S 4TIl R S€ o (vs cligop
<At A cov YRAPLET Lon- ~76ﬁ

@ <o ¢PUNEY THE <ond. Camporewts AFTER
IWCLUAING THESE 48665, THE (EAST evpévsive
SOLUTON 18 EKACTLY A pmuy cosy 3PwwiNg

YHE COMV compongvss; o b
?&% Zyglvsw €l) & 63, 4 s

Screencasts Page 14

5 A Capital Idea
Q. Prove that if f{n) € o(g(n)), then f(n} € Olg(n)).
Asgume (0 € 0 Cg(m) -
50 G o mdllm\é a4, > 6430/‘6

r n3n,,
prost $HOW Cl) € Olyln)).

M C/D“&[, Bg aggymfl;\ noO w(;&
ok GLYScqu) for ol 2

Screencasts Page 15

ach_row below, cirele the correc there are
aer integers 1y and ns such that () < g(ng) and f(n2) = glns).

——

e know that for all positive integers o,

gch*\ - "7C\ A —

fin) may or may not be in C{gln))

fin) e aln) Sfn) may or may not be in Q{g(n))

Sin) may or may not be in ©{g(n))

fin) may or may not be in ofg{n))

() = 9

F{n) may or may not be in wig(n))

Screencasts Page 16

3. Consider the following pseudocode:

t dsrs

incident on the node
7 v?)

For each edge (u’, v) in E incident on the nod
UnknownComputation(G, u, u’)

The direc

'l graph G = (V, E) given as input uses an adjacency list representation as does the
algorithm it8elf. You're given no further information about UnknownCompytation, however, Give a
good asymptotic lower-bound on the runtime of the algorithm in terms Af the number of nodes |V
and edges |£). Briefly justify vour bound by annotating the code abgre. (Note: the same bound is

correct for bath best- and worst-case.)
A RD [0 =
[Svts

— q[e
0—0
oﬂ% ORI ts: (\i\\/ “’JLOV@
o—

l'L

Screencasts Page 17

1. If ly(n) (J[."i_::i]), is hy(n)! € O(ha(n)!)? Prove or disprove your answer. CALQ& . CDU/\]TéfZ_EMM‘pLé 15

Screencasts Page 18

[6 Pairs of Apples and Oranges

For each of the following, indicate the most restrictive true answer of fin) € o(g(n)), f{n) € Olgin)),
fin) e B(gin)), fin) e Qgin)), and f(n) € wlgln)). — ————
| n . 4 oA

go e, WE eso
—;/@Q o fe 2)

lo(nv™)

|
=
s

% gn lan

5-‘
A
1)}
™~
53
N
T'\
C\\ |
) A
NG
S
N
>F—
N
3
N
Ay

Screencasts Page 19

(—7 Greedy Straw-Man Pessimality

You're solving the optimal caching problem except maximizing the number of cache misses rather than

minimizing it.

UNNECESSARY FLAVOR TEXT: A systems res

weh group (somewhere besides UBC) is trying

to show how great their new caching algorithm is. They decide to test against the worst algorithm they
can create. So, given the number of picces of data n, the cache size k < n, the sequence of data items

dyodda, o iy, and the initial contents of the cache {ep. 00, ..., g b which for this version of the problem

are “dummy” data items may never appear in the sequence of data items, i.c., the cache is effectively

empty—they want an algorithm that gives an eviction schedule e, e
of cache misses, but (1) never evicting an element unless the cache i

....rj that maximizes the number
full and a cache miss oceurs and (2)

always replacing the evicted item with that caused the cache miss. (Le., it's a plansible strategy, even if

terrible.)

1. Here is a greedy strategy that does not always causce the largest number of cache misses: Each time

a data item is not in the cache (a miss oco

recently. (The initial “dummy” data items are evicted in an arbitrary order.)

Now, give a small example that shows that this strategy can fail.

13 et
1 mUBE

date . Z—zé(3/ ilz'/_ji/},/:l/—«

- — —

20

Screencasts Page 20

5), eviet the item that was brought into the cache most

CYEVE
GYEXx 1

Repeated from the problem intro: You're solving the optimal caching problem except maximizing
the number of cache misses rather than minimizing it.

UNNECESSARY FLAVOR TEXT: A systems rescarch group (somewhere besides UBC) s tryving
to show how great their new caching algorithm is, They decide to test against the worst algorithin
they can create. So, given the number of pieces of data n, the cache size & < n, the sequence of
data items dy, ds .y, and the initial contents of the cache {ey, e “ b—which for this version

of the problem are “durmmy” data items may never appear in the sequence of data items, ie., the
cache is effectively empty—they want an algorithm that gives an eviction schedule ey, es. ..., e that
maximizes the number of cache misses, but (1) never evicting an clement unless the cache is full

oceurs and (2) always replacing the evieted item with that caused the cache miss.

and a cache
(Le., it's a plausible strategy, even if terrible.)

2. Give a new greedy algorithm (either in English like the one above or in pseudocode) that correetly

solves this problem.

When v hae « l

choree of non-dv = T
et 40 w‘/(’ 3

ok e oo Wit —
Mﬂf/“VM 1

507 mﬁ* .

21

Screencasts Page 21

Repeated from the problem intro: You're solving the optimal caching problem except maximizing
the number of cache misses rather than minimizing it.

3. Prove that your strategy is correct.

E\/LQ/T TUE€ NELY CAcHEA
" (TeM THAT Wil B€ USeh,
o

% u’“\g Lw&/

o d j/

E N NONV6 o

THES6 Hﬂf/’:?
eviex ¥ AT Ak 10 ¢,

consipef <HE FRET BATA IT6M o widien
creehy = A PESSMAL SOUN BIFFER N
C,\flb\'*"lé’ A Nov- Bummy LTEM,

w»oa Cneehy enss ¥y PES oyt v

<t CACME. YA SYEAM
X ¥ /“‘f;er ‘33?44\}66\4 Ny irem w Tue M 5
ué" A

TALRE A~ BE
h e oo m ke ACcess 1o KD
o ? lsm(&sées o K or Y (e eV wWoD>
M (i grskd VHDI&’\} Bl T T D
@DK cANNDT AN € s >y
st RACL W ON MW i

) L LLK.5 érL6h %
e it R jecess 0, 125 env]

PESS LAS <He
6C <HAT EUCTLN T2 "/*
?%J@ %’gg@mié AcL6ss 1 7C NS r HAD o SAmé
¢ 06 GO T e ACLESt TO Xy v HAS SAME STAT
CLSE, C"’Of ye/aﬁzw‘,ZTl wd (CONTRAMNN)
(/6 Mhﬁ)é’ ‘\ggguMAL oV € SsT€P Mong SmiL R ™

TLws. A cwt e
@266’5‘/ <Hé SAm6 & VF VT
</ a%n/&(ﬁ will, make v = crRLENY. CQGA

8 Declaration of (a Degree of) Independence
Let’s see if we can find a bound on the minimum size of an independent set in an undirected graph given W‘O“
the maximum degree dpmax of any node in the graph. (Recall that the degree of a node in an undirccted a
graph is the number of edges incident on that node.) L/ /VI iM
Here's a naive alg zorithm to try to [imi nl lllt] 0 < Vl
Wbradd |
ar B <oy oam £ 20 ey
Initializg/the solution to the e t_, set {} ‘L [(E j
While thgre are remaining nodesfin the graph / "'f f"‘l/k
ick a’ nodefand add it to the solution ——0

Remove 1T and all nodes adjacent to it from the graph |ﬂ cJ. lls ws 0 MW (N

Jendent set in a graph:

. Give and Justify (i.c., by anfifptating the code and explaining any complex annotations) a goc d(l) fv /lto{'_

-ase big-0O-bound on 11(rugtime tf!]n algorithm in terms ft]] number of vertices in 1[1: gri lph n
and the maximum degree of\age verex dipax.-

ToTAL: OCW') é' —E(.ré;s'f] of Z/;/

A la olm
W\{ 17.. 1‘16”0 (M r entl -Ll‘/(AmA\/\

Screencasts Page 22

Screencasts Page 23

~C - u

’V(alm

Repeated from the problem intro:

Initialize the solution to the empty set {}
While there are remaining nodes in the graph
Pick a node and add it to the solution
Remgve it and all nodes adjacent to it from the graph

——

N 2L verts, |yl
O’n—..y‘ Paxy o'eayu

2. Give arfd justify a good, non-asymptotic lower-bound on the number of iterations of the loop

- ——
performded on any grapfh. (A progisg Egég'!nuln. not a (1, o, 8,), or w bound!)

o F
Etmer

artoo Sma 7/ red
too smal], sh “l

Screencasts Page 24

[

{ ror)

3. Briefly explain why a lower-bound on the number of iterations of the algofThm above also gives a

lower-bound on the size of the independent set in the input graph.

L pomnemim 2
m k\a 3\1(,3 a/y\ ',,:J s&.l’
s s Q@,,M[o fue
a > les.
S@/('ch— of et 5 & [W’ano,
on the e 0% the

”'ﬂ/ (~d gé'é‘

Screencasts Page 25

