
CPSC 320 Assignment #5

February 22, 2015

Due date: Monday, 2015/03/02 at 5PM
Staple your solution behind the CPSC 320 cover page and submit in our

handin box.

We guarantee that we will mark at least one sub-part of each question.

1. You're designing a divide-and-conquer algorithm for a problem. An

existing algorithm that solves the problem (without using divide-and-
conquer) runs in Θ(n2) time.

You've started work on a divide-and-conquer approach that breaks a

problem instance of size n down into 5 subproblems each of size n/3
in constant time, but you're not quite sure what the best algorithm is

to put the solutions to the subproblems together into a solution to the

original problem instance.

Use the Master Theorem to give clear advice on what the critical pos-

sible complexities are for the algorithm to combine the solutions.

(E.g., you might say something of a similar form to this incorrect
statement: �Any algorithm to combine the solutions in o(n) time will

result in a solution to the problem that is in Θ(n1.5). Anything in

Θ(n) will result in a solution that is in O(n2

lgn), but larger functions
will result in runtimes no better than the existing algorithm.�)

2. Some textbook problems:

(a) Problem 5.6.

(b) Problem 5.7.

Note: We'll post some suggestions on Piazza for this one that

should help!

1

(c) Just for fun (don't submit): �Steepest gradient descent� is a

good way to �nd a local minimum. Analyse its worst-case per-

formance on Problem 5.7, assuming you start at the upper-left

grid point and always look at the (at most) 4 grid points or-

thogonally surrounding a particular point. (Be sure to describe

a�scalable!�worst case input!)

3. A friend describes the following algorithm, saying perhaps it can be

used to sort lists of numbers:

NOTE: A is an array of numbers of length n. Sorting "in place"

means mutating the existing array. (So, if we sort the array

[1, 3, 2] in place, we swap the last two elements so the same

array now holds [1, 2, 3].) A[3..5] is the three-element

subarray of A composed of A[3], A[4], and A[5].

DrawAndQuarter(A, lo, hi):

if hi - lo + 1 < 4:

Sort the elements of A[lo..hi] in O(1) time in place

else:

Let mid <- lo + (hi - lo + 1)/2

Let q1 <- lo + (mid - lo)/2

Let q3 <- mid + (hi - mid + 1)/2

DrawAndQuarter(A, q1, q3 - 1)

DrawAndQuarter(A, lo, mid - 1)

DrawAndQuarter(A, mid, hi)

(a) Prove or disprove that this is a correct sorting algorithm.

(b) Analyse the runtime of this algorithm. (Note: we can analyse

the algorithm's runtime whether or not it is correct!) You may

use any method you wish for the analysis, but you should produce

good Θ bounds on the best-case and worst-case runtimes in terms

of n, and you may want to try multiple approaches on your own

for practice!

(c) Imagine we alter the algorithm to replace the line DrawAndQuarter(A,

mid, hi) with:

Let sorted be true

For i from mid to hi - 1:

2

If A[i] > A[i+1]:

Change sorted to false

If sorted is false:

DrawAndQuarter(A, mid, hi)

Reanalyse the algorithm's runtime, giving good Θ-bounds on the

best- and worst-case runtimes. Again, you may use any technique

you wish.

(d) Just for fun (don't submit): Could �Drawing-and-Thirding�

work as a sorting algorithm? (Sort the �rst two-thirds, sort the

second two-thirds, and then sort the �rst two-thirds.) Analyse.

4. Midterm Review

(a) Looking back at Question 2 on the midterm (about MSTs), we'll

consider this commonly proposed but incorrect reduction:

A1: Contract all negative-weighted edges (discarding

the higher cost edge when two edges coincide).

A2: Union all negative-weighted edges with the set of

edges in the underlying instance's solution.

Use an example problem instance to illustrate the distinct �aw

with this algorithm suggested by each of the following parts:

i. Edges of one particular weight exercise a minor �aw.

ii. Another �aw can keep the reduction's result from even being

a solution, much less an optimal solution.

(b) In Question 3 (the �Lazy� Interval Scheduling Problem), Part 4

builds toward�without actually �nishing�a proof of optimality

of the unspeci�ed �new� greedy algorithm. We'll consider a com-

mon confusion people had between an �instance� of a problem,

a �solution�, and an �optimal solution�. We'll also consider how

similar or disimilar O can be from the �new� greedy algorithm's

solution.

Reminder: in a particular instance of the problem, the con�ict

set of a job j is the set of all jobs that con�ict with j, including
j itself. (So, every job has at least one job in its con�ict set:

itself.)

3

i. Which part(s) establish that O − {c} are a solution to the

new instance?

ii. Which part(s) establish O − {c}'s optimality?

iii. It turns out that at no stage of Part 4 do any of the three

questions refer to the �new� greedy algorithm's solution. In-

deed the algorithm's solution can be very di�erent from

O. Draw an example instance in which two solutions�both

optimal�share exactly one job in common but each contain

at least three other jobs.

4

